Sam Watson’s journal round-up for October 24th 2016

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Mortality decrease according to socioeconomic groups during the economic crisis in Spain: a cohort study of 36 million people. The Lancet [PubMed] Published 13th October 2016

There is no shortage of studies examining the relationship between macroeconomic conditions and population health. Papers have come up on the journal round-up here, here, and here, and we previously discussed economic conditions and baby health. So what does this study add? Using data from the 2011 Spanish census on 36 million individuals, the study compares age-adjusted mortality rates for different socioeconomic groups before and after the economic crisis in Spain. The socioeconomic status of households was classified on the basis of household wealth, household floor space, and number of cars. The study compares the annual change in mortality rates for 2004-7 to the annual percentage change in the post-crisis period 2008-11. In essence the authors are looking for a structural break. The article reports that mortality rates declined faster post-crisis than before and that this effect was more pronounced in low socioeconomic status households. However, this conclusion is based on observed differences in estimated changes of rate: differences between the socioeconomic groups are not directly tested. The authors seem to fall foul of the problem that the difference between “significant” and “not significant” is not itself statistically significant. The plots in the paper illustrate strong differences in age-adjusted mortality rates by socioeconomic status, but a structural break in changes in rates is not so clearly evident. A large econometric literature has arisen around measuring structural breaks in macroeconomic series, many of these methods may have been of use. Indeed, there have been a number of sophisticated and careful analyses of the effect of macroeconomic conditions and health previous published, including the seminal study by Christopher Ruhm. Why this study landed in The Lancet therefore seems somewhat mysterious.

The ambiguous effect of GP competition: the case of hospital admissions. Health Economics [PubMedPublished 14th October 2016

Another mainstay of this blog: competition in healthcare. We’ve covered papers on this topic in previous journal round-ups here and here, and critically discussed a paper on the topic here. It seems to be one of those topics with important implications for healthcare policy but one which becomes less certain the more is known. Indeed, this paper recognises this in its title. The ambiguity to which it refers is the effect of GP competition on hospital admissions: if GPs retain more patients due to increased competition then admissions go down; if they recruit new patients due to increased competition then admissions go up. Typically studies in this area either compare outcomes before and after a pro-competitive policy change, or compare outcomes between areas with different densities (and hence competition) between GPs. This study adopts a variant of the latter approach using the number of open list practices in an area as their proxy for competition. They find that increased competition reduces inpatient attendances and increases outpatient attendances. I’ve often been skeptical of the use of GP density as a proxy for competition. Do people really compare GP practices before choosing them or do they just go to the nearest one? If a person is already registered at one practice, how often do they search around to choose another if care isn’t that bad? An observed effect of a change in GP density could be attributable to entry into or exit from the ‘market’ of differently performing providers, which may have little to do with competition, more the type of GP, GP age, and differences in medical training. Nevertheless, this article does present a well-considered analysis, the difficulty is in the interpretation in light of all the previous studies.

Modeling the economic burden of adult vaccine-preventable diseases in the United States. Health Affairs [PubMed] Published 12th October 2016

Andrew Wakefield, disbarred doctor and disgraced author of the fraudulent Lancet paper on MMR and autism, is currently promoting his new anti-vaccine film. His work and a cabal of conspiracy theorists have led many parents to refuse to get their children vaccinated. All this despite vaccines being one of the safest and most cost-effective of health interventions. This new paper seeks to determine the economic burden of vaccine-preventable diseases is in the US. The diseases considered include hepatitis A and B; measles, mumps, and rubella; and shingles (herpes zoster). Epidemiological models were developed in conjunction with experts; economic costs were assessed using both cost-of-illness and full income methodologies; and, parameters were specified on the basis of a literature review. Taking into account healthcare costs and productivity losses, the burden of the considered diseases was estimated at $9 billion annually. The authors also discuss taking into account social welfare losses using the value of a statistical life, however I think I may be misinterpreting the results when it states

The current-dollar value of statistical life calculated from each source was $5.9 billion from the FDA; $6.3 billion from the NHTSA; and $8.3 billion from the EPA. The full income value of death as a result of vaccine-preventable diseases is estimated to be $176 billion annually (plausibility range: $166 billion–$231 billion).

That seems way too large to me so I’m not sure what to make of that. Nevertheless, the study illustrates the potentially massive burden that vaccine-preventable diseases may present.



Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s