Alastair Canaway’s journal round-up for 10th July 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Use-of-time and health-related quality of life in 10- to 13-year-old children: not all screen time or physical activity minutes are the same. Quality of life Research [PubMedPublished 3rd July 2017

“If you watch too much TV, it’ll make your eyes square” – something I heard a lot as a child. This first paper explores whether this is true (sort of) by examining associations between aspects of time use and HRQL in children aged 10-13 (disclaimer: I peer reviewed it and was pleased to see them incorporate my views). This paper aims to examine how different types of time use are linked to HRQL. Time use was examined by the Multimedia Activity Recall for Children and Adolescents (MARCA) which separates out time into physical activity (sport, active transport, and play), screen time (TV, videogames, computer use), and sleep. The PedsQL was used to assess HRQL, whilst dual x-ray absorptiometry was used to accurately assess fatness. There were a couple of novel aspects to this study, first, the use of absorptiometry to accurately measure body fat percentage rather than the problematic BMI/skin folds in children; second, separating time out into specific components rather than just treating physical activity or screen time as homogeneous components. The primary findings were that for both genders, fatness (negative), sport (positive) and development stage (negative) were associated with HRQL. For boys, the most important other predictor of HRQL was videogames (negative) whilst predictors for girls included television (negative), active transport (negative) and household income (positive). With the exception of ‘active travel’ for girls, I don’t think any of these findings are particularly surprising. As with all cross-sectional studies of this nature, the authors give caution to the results: inability to demonstrate causality. Despite this, it opens the door for various possibilities for future research, and ideas for shaping future interventions in children this age.

Raise the bar, not the threshold value: meeting patient preferences for palliative and end-of-life care. PharmacoEconomics – Open Published 27th June 2017

Health care ≠ end of life care. Whilst health care seeks to maximise health, can the same be said for end of life care? Probably not. This June saw an editorial elaborating on this issue. Health is an important facet of end of life care. However, there are other substantial objects of value in this context e.g. preferences for place of care, preparedness, reducing family burdens etc. Evidence suggests that people at end of life can value these ‘other’ objects more than health status or life extension. Thus there is value beyond that captured by health. This is an issue for the QALY framework where health and length of life are the sole indicators of benefit. The editorial highlights that this is not people wishing for higher cost-per-QALY thresholds at end of life, instead, it is supporting the valuation of key elements of palliative care within the end of life context. It argues that palliative care interventions often are not amenable to integration with survival time in a QALY framework, this effectively implies that end of life care interventions should be evaluated in a separate framework to health care interventions altogether. The editorial discusses the ICECAP-Supportive Care Measure (designed for economic evaluation of end of life measures) as progress within this research context. An issue with this approach is that it doesn’t address allocative efficiency issues (and comparability) with ‘normal’ health care interventions. However, if end of life care is evaluated separately to regular healthcare, it will lead to better decisions within the EoL context. There is merit to this justification, after all, end of life care is often funded via third parties and arguments could, therefore, be made for adopting a separate framework. This, however, is a contentious area with lots of ongoing interest. For balance, it’s probably worth pointing out Chris’s (he did not ask me to put this in!) book chapter which debates many of these issues, specifically in relation to defining objects of value at end of life and whether the QALY should be altogether abandoned at EoL.

Investigating the relationship between costs and outcomes for English mental health providers: a bi-variate multi-level regression analysis. European Journal of Health Economics [PubMedPublished 24th June 2017

Payment systems that incentivise cost control and quality improvements are increasingly used. In England, until recently, mental health services have been funded via block contracts that do not necessarily incentivise cost control and payment has not been linked to outcomes. The National Tariff Payment System for reimbursement has now been introduced to mental health care. This paper harnesses the MHMDS (now called MHSDS) using multi-level bivariate regression to investigate whether it is possible to control costs without negatively affecting outcomes. It does this by examining the relationship between costs and outcomes for mental health providers. Due to the nature of the data, an appropriate instrumental variable was not available, and so it is important to note that the results do not imply causality. The primary results found that after controlling for key variables (demographics, need, social and treatment) there was a minuscule negative correlation between residual costs and outcomes with little evidence of a meaningful relationship. That is, the data suggest that outcome improvements could be made without incurring a lot more cost. This implies that cost-containment efforts by providers should not undermine outcome-improving efforts under the new payment systems. Something to bear in mind when interpreting the results is that there was a rather large list of limitations associated with the analysis, most notably that the analysis was conducted at a provider level. Although it’s continually improving, there still remain issues with the MHMDS data: poor diagnosis coding, missing outcome data, and poor quality of cost data. As somebody who is yet to use MHMDS data, but plans to in the future, this was a useful paper for generating ideas regarding what is possible and the associated limitations.

Credits

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s