Brent Gibbons’s journal round-up for 22nd January 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Is retirement good for men’s health? Evidence using a change in the retirement age in Israel. Journal of Health Economics [PubMed] Published January 2018

This article is a tour de force from one chapter of a recently completed dissertation from the Hebrew University of Jerusalem. The article focuses on answering the question of what are the health implications of extending working years for older adults. As many countries are faced with critical decisions on how to adjust labor policies to solve rising pension costs (or in the case of the U.S., Social Security insolvency) in the face of aging populations, one obvious potential solution is to change the retirement age. Most OECD countries appear to have retirement ages in the mid-60’s with a number of countries on track to increase that threshold. Israel is one of these countries, having changed their retirement age for men from age 65 to age 67 in 2004. The author capitalizes on this exogenous change in retirement incentives, as workers will be incentivized to keep working to receive full pension benefits, to measure the causal effect of working in these later years, compared to retiring. As the relationship between employment and health is complicated by the endogenous nature of the decision to work, there is a growing literature that has attempted to deal with this endogeneity in different ways. Shai details the conflicting findings in this literature and describes various shortcomings of methods used. He helpfully categorizes studies into those that compare health between retirees and non-retirees (does not deal with selection problem), those that use variation in retirement age across countries (retirement ages could be correlated with individual health across countries), those that exploit variation in specific sector retirement ages (problem of generalizing to population), and those that use age-specific retirement eligibility (health may deteriorate at specific age regardless of eligibility for retirement). As this empirical question has amounted conflicting evidence, the author suggests that his methodology is an improvement on prior papers. He uses a difference-in-difference model that estimates the impact on various health outcomes, before and after the law change, comparing those aged 65-66 years after 2004 with both older and younger cohorts unaffected by the law. The assumption is that any differences in measured health between the age 65-66 group and the comparison group are a result of the extended work in later years. There are several different datasets used in the study and quite a number of analyses that attempt to assuage threats to a causal interpretation of results. Overall, results are that delaying the retirement age has a negative effect on individual health. The size of the effect found is in the ballpark of 1 standard deviation; outcome measures included a severe morbidity index, a poor health index, and the number of physician visits. In addition, these impacts were stronger for individuals with lower levels of education, which the author relates to more physically demanding jobs. Counterfactuals, for example number of dentist visits, which are not expected to be related to employment, are not found to be statistically different. Furthermore, there are non-trivial estimated effects on health care expenditures that are positive for the delayed retirement group. The author suggests that all of these findings are important pieces of evidence in retirement age policy decisions. The implication is that health, at least for men, and especially for those with lower education, may be negatively impacted by delaying retirement and that, furthermore, savings as a result of such policies may be tempered by increased health care expenditures.

Evaluating community-based health improvement programs. Health Affairs [PubMed] Published January 2018

For article 2, I see that the lead author is a doctoral student in health policy at Harvard, working with colleagues at Vanderbilt. Without intention, this round-up is highlighting two very impressive studies from extremely promising young investigators. This study takes on the challenge of evaluating community-based health improvement programs, which I will call CBHIPs. CBHIPs take a population-based approach to public health for their communities and often focus on issues of prevention and health promotion. Investment in CBHIPs has increased in recent years, emphasizing collaboration between the community and public and private sectors. At the heart of CBHIPs are the ideas of empowering communities to self-assess and make needed changes from within (in collaboration with outside partners) and that CBHIPs allow for more flexibility in creating programs that target a community’s unique needs. Evaluations of CBHIPs, however, suffer from limited resources and investment, and often use “easily-collectable data and pre-post designs without comparison or control communities.” Current overall evidence on the effectiveness of CBHIPs remains limited as a result. In this study, the authors attempt to evaluate a large set of CBHIPs across the United States using inverse propensity score weighting and a difference-in-difference analysis. Health outcomes on poor or fair health, smoking status, and obesity status were used at the county level from the BRFSS (Behavioral Risk Factor Surveillance System) SMART (Selected Metropolitan/Micropolitan Area Risk Trends) data. Information on counties implementing CBHIPs was compiled through a series of systematic web searches and through interviews with leaders in population health efforts in the public and private sector. With information on the exact years of implementation of CBHIPs in each county, a pre-post design was used that identified county treatment and control groups. With additional census data, untreated counties were weighted to achieve better balance on pre-implementation covariates. Importantly, treated counties were limited to those with CBHIPs that implemented programs related to smoking and obesity. Results showed little to no evidence that CBHIPs improved population health outcomes. For example, CBHIPs focusing on tobacco prevention were associated with a 0.2 percentage point reduction in the rate of smoking, which was not statistically significant. Several important limitations of the study were noted by the authors, such as limited information on the intensity of programs and resources available. It is recognized that it is difficult to improve population-level health outcomes and that perhaps the study period of 5-years post-implementation may not have been long enough. The researchers encourage future CBHIPs to utilize more rigorous evaluation methods, while acknowledging the uphill battle CBHIPs face to do this.

Through the looking glass: estimating effects of medical homes for people with severe mental illness. Health Services Research [PubMed] Published October 2017

The third article in this round-up comes from a publication from October of last year, however, it is from the latest issue of Health Services Research so I deem it fair play. The article uses the topic of medical homes for individuals with severe mental illness to critically examine the topic of heterogeneous treatment effects. While specifically looking to answer whether there are heterogeneous treatment effects of medical homes on different portions of the population with a severe mental illness, the authors make a strong case for the need to examine heterogeneous treatment effects as a more general practice in observational studies research, as well as to be more precise in interpretations of results and statements of generalizability when presenting estimated effects. Adults with a severe mental illness were identified as good candidates for medical homes because of complex health care needs (including high physical health care needs) and because barriers to care have been found to exist for these individuals. Medicaid medical homes establish primary care physicians and their teams as the managers of the individual’s overall health care treatment. The authors are particularly concerned with the reasons individuals choose to participate in medical homes, whether because of expected improvements in quality of care, regional availability of medical homes, or symptomatology. Very clever differences in estimation methods allow the authors to estimate treatment effects associated with these different enrollment reasons. As an example, an instrumental variables analysis, using measures of regional availability as instruments, estimated local average treatment effects that were much smaller than the fixed effects estimates or the generalized estimating equation model’s effects. This implies that differences in county-level medical home availability are a smaller portion of the overall measured effects from other models. Overall results were that medical homes were positively associated with access to primary care, access to specialty mental health care, medication adherence, and measures of routine health care (e.g. screenings); there was also a slightly negative association with emergency room use. Since unmeasured stable attributes (e.g. patient preferences) do not seem to affect outcomes, results should be generalizable to the larger patient population. Finally, medical homes do not appear to be a good strategy for cost-savings but do promise to increase access to appropriate levels of health care treatment.

Credits

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s