Skip to content

Chris Sampson’s journal round-up for 5th February 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Cost-effectiveness analysis of germ-line BRCA testing in women with breast cancer and cascade testing in family members of mutation carriers. Genetics in Medicine [PubMed] Published 4th January 2018

The idea of testing women for BRCA mutations – faulty genes that can increase the probability and severity of breast and ovarian cancers – periodically makes it into the headlines. That’s not just because of Angelina Jolie. It’s also because it’s a challenging and active area of research with many uncertainties. This new cost-effectiveness analysis evaluates a programme that incorporates cascade testing; testing relatives of mutation carriers. The idea is that this could increase the effectiveness of the programme with a reduced cost-per-identification, as relatives of mutation carriers are more likely to also carry a mutation. The researchers use a cohort-based Markov-style decision analytic model. A programme with three test cohorts – i) women with unilateral breast cancer and a risk prediction score >10%, ii) first-degree relatives, and iii) second-degree relatives – was compared against no testing. A positive result in the original high-risk individual leads to testing in the first- and second-degree relatives, with the number of subsequent tests occurring in the model determined by assumptions about family size. Women who test positive can receive risk-reducing mastectomy and/or bilateral salpingo-oophorectomy (removal of the ovaries). The results are favourable to the BRCA testing programme, at $19,000 (Australian) per QALY for testing affected women only and $15,000 when the cascade testing of family members was included, with high probabilities of cost-effectiveness at $50,000 per QALY. I’m a little confused by the model. The model includes the states ‘BRCA positive’ and ‘Breast cancer’, which clearly are not mutually exclusive. And It isn’t clear how women entering the model with breast cancer go on to enjoy QALY benefits compared to the no-test group. I’m definitely not comfortable with the assumption that there is no disutility associated with risk-reducing surgery. I also can’t see where the cost of identifying the high-risk women in the first place was accounted for. But this is a model, after all. The findings appear to be robust to a variety of sensitivity analyses. Part of the value of testing lies in the information it provides about people beyond the individual patient. Clearly, if we want to evaluate the true value of testing then this needs to be taken into account.

Economic evaluation of direct-acting antivirals for hepatitis C in Norway. PharmacoEconomics Published 2nd February 2018

Direct-acting antivirals (DAAs) are those new drugs that gave NICE a headache a few years back because they were – despite being very effective and high-value – unaffordable. DAAs are essentially curative, which means that they can reduce resource use over a long time horizon. This makes cost-effectiveness analysis in this context challenging. In this new study, the authors conduct an economic evaluation of DAAs compared with the previous class of treatment, in the Norwegian context. Importantly, the researchers sought to take into account the rebates that have been agreed in Norway, which mean that the prices are effectively reduced by up to 50%. There are now lots of different DAAs available. Furthermore, hepatitis C infection corresponds to several different genotypes. This means that there is a need to identify which treatments are most (cost-)effective for which groups of patients; this isn’t simply a matter of A vs B. The authors use a previously developed model that incorporates projections of the disease up to 2030, though the authors extrapolate to a 100-year time horizon. The paper presents cost-effectiveness acceptability frontiers for each of genotypes 1, 2, and 3, clearly demonstrating which medicines are the most likely to be cost-effective at given willingness-to-pay thresholds. For all three genotypes, at least one of the DAA options is most likely to be cost-effective above a threshold of €70,000 per QALY (which is apparently recommended in Norway). The model predicts that if everyone received the most cost-effective strategy then Norway would expect to see around 180 hepatitis C patients in 2030 instead of the 300-400 seen in the last six years. The study also presents the price rebates that would be necessary to make currently sub-optimal medicines cost-effective. The model isn’t that generalisable. It’s very much Norway-specific as it reflects the country’s treatment guidelines. It also only looks at people who inject drugs – a sub-population whose importance can vary a lot from one country to the next. I expect this will be a valuable piece of work for Norway, but it strikes me as odd that “affordability” or “budget impact” aren’t even mentioned in the paper.

Cost-effectiveness of prostate cancer screening: a systematic review of decision-analytical models. BMC Cancer [PubMed] Published 18th January 2018

You may have seen prostate cancer in the headlines last week. Despite the number of people in the UK dying each year from prostate cancer now being greater than the number of people dying from breast cancer, prostate cancer screening remains controversial. This is because over-detection and over-treatment are common and harmful. Plenty of cost-effectiveness studies have been conducted in the context of detecting and treating prostate cancer. But there are various ways of modelling the problem and various specifications of screening programme that can be evaluated. So here we have a systematic review of cost-effectiveness models evaluating prostate-specific antigen (PSA) blood tests as a basis for screening. From a haul of 1010 studies, 10 made it into the review. The studies modelled lots of different scenarios, with alternative screening strategies, PSA thresholds, and treatment pathways. The results are not consistent. Many of the scenarios evaluated in the studies were more costly and less effective than current practice (which tended to be the lack of any formal screening programme). None of the UK-based cost-per-QALY estimates favoured screening. The authors summarise the methodological choices made in each study and consider the extent to which this relates to the pathways being modelled. They also specify the health state utility values used in the models. This will be a very useful reference point for anyone trying their hand at a prostate cancer screening model. Of the ten studies included in the review, four of them found at least one screening programme to be potentially cost-effective. ‘Adaptive screening’ – whereby individuals’ recall to screening was based on their risk – was considered in two studies using patient-level simulations. The authors suggest that cohort-level modelling could be sufficient where screening is not determined by individual risk level. There are also warnings against inappropriate definition of the comparator, which is likely to be opportunistic screening rather than a complete absence of screening. Generally speaking, a lack of good data seems to be part of the explanation for the inconsistency in the findings. It could be some time before we have a clearer understanding of how to implement a cost-effective screening programme for prostate cancer.

Credits

 

By

  • Chris Sampson

    Founder of the Academic Health Economists' Blog. Senior Principal Economist at the Office of Health Economics. ORCID: 0000-0001-9470-2369

We now have a newsletter!

Sign up to receive updates about the blog and the wider health economics world.

0 0 votes
Article Rating
Subscribe
Notify of
guest

0 Comments
Inline Feedbacks
View all comments
0
Join the conversation, add a commentx
()
x
%d bloggers like this: