Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.
Patient choice and provider competition – quality enhancing drivers in primary care? Social Science & Medicine Published 29th January 2019
There’s no shortage of studies in economics claiming to identify the impact (or lack of impact) of competition in the market for health care. The evidence has brought us close to a consensus that greater competition might improve quality, so long as providers don’t compete on price. However, many of these studies aren’t able to demonstrate the mechanism through which competition might improve quality, and the causality is therefore speculative. The research reported in this article was an attempt to see whether the supposed mechanisms for quality improvement actually exist. The authors distinguish between the demand-side mechanisms of competition-increasing quality-improving reforms (i.e. changes in patient behaviour) and the supply-side mechanisms (i.e. changes in provider behaviour), asserting that the supply-side has been neglected in the research.
The study is based on primary care in Sweden’s two largest cities, where patients can choose their primary care practice, which could be a private provider. Key is the fact that patients can switch between providers as often as they like, and with fewer barriers to doing so than in the UK. Prospective patients have access to some published quality indicators. With the goal of maximum variation, the researchers recruited 13 primary health care providers for semi-structured interviews with the practice manager and (in most cases) one or more of the practice GPs. The interview protocol included questions about the organisation of patient visits, information received about patients’ choices, market situation, reimbursement, and working conditions. Interview transcripts were coded and a framework established. Two overarching themes were ‘local market conditions’ and ‘feedback from patient choice’.
Most interviewees did not see competitors in the local market as a threat – conversely, providers are encouraged to cooperate on matters such as public health. Where providers did talk about competing, it was in terms of (speed of) access for patients, or in competition to recruit and keep staff. None of the interviewees were automatically informed of patients being removed from their list, and some managers reported difficulties in actually knowing which patients on their list were still genuinely on it. Even where these data were more readily available, nobody had access to information on reasons for patients leaving. Managers saw greater availability of this information as useful for quality improvement, while GPs tended to think it could be useful in ensuring continuity of care. Still, most expressed no desire to expand their market share. Managers reported using marketing efforts in response to greater competition generally, rather than as a response to observed changes within their practice. But most relied on reputation. Some reported becoming more service-minded as a result of choice reforms.
It seems that practices need more information to be able to act on competitive pressures. But, most practices don’t care about it because they don’t want to expand and they face no risk of there being a shortage of patients (in cities, at least). And, even if they did want to act on the information, chances are it would just create an opportunity for them to improve access as a way of cherry-picking younger and healthier people who demand convenience. Primary care providers (in this study, at least) are not income maximisers, but satisficers (they want to break-even), so there isn’t much scope for reforms to encourage providers to compete for new patients. Patient choice reforms may improve quality, but it isn’t clear that this has anything to do with competitive pressure.
Maximising the impact of patient reported outcome assessment for patients and society. BMJ [PubMed] Published 24th January 2019
Patient-reported outcome measures (PROMs) have been touted as a way of improving patient care. Yet, their use around the world is fragmented. In this paper, the authors make some recommendations about how we might use PROMs to improve patient care. The authors summarise some of the benefits of using PROMs and discuss some of the ways that they’ve been used in the UK.
Five key challenges in the use of PROMs are specified: i) appropriate and consistent selection of the best measures; ii) ethical collection and reporting of PROM data; iii) data collection, analysis, reporting, and interpretation; iv) data logistics; and v) a lack of coordination and efficiency. To address these challenges, the authors recommend an ‘integrated’ approach. To achieve this, stakeholder engagement is important and a governance framework needs to be developed. A handy table of current uses is provided.
I can’t argue with what the paper proposes, but it outlines an idealised scenario rather than any firm and actionable recommendations. What the authors don’t discuss is the fact that the use of PROMs in the UK is flailing. The NHS PROMs programme has been scaled back, measures have been dropped from the QOF, the EQ-5D has been dropped from the GP Patient Survey. Perhaps we need bolder recommendations and new ideas to turn the tide.
Check your checklist: the danger of over- and underestimating the quality of economic evaluations. PharmacoEconomics – Open [PubMed] Published 24th January 2019
This paper outlines the problems associated with misusing methodological and reporting checklists. The author argues that the current number of checklists available in the context of economic evaluation and HTA (13, apparently) is ‘overwhelming’. Three key issues are discussed. First, researchers choose the wrong checklist. A previous review found that the Drummond, CHEC, and Philips checklists were regularly used in the wrong context. Second, checklists can be overinterpreted, resulting in incorrect conclusions. A complete checklist does not mean that a study is perfect, and different features are of varying importance in different studies. Third, checklists are misused, with researchers deciding which items are or aren’t relevant to their study, without guidance.
The author suggests that more guidance is needed and that a checklist for selecting the correct checklist could be the way to go. The issue of updating checklists over time – and who ought to be responsible for this – is also raised.
In general, the tendency seems to be to broaden the scope of general checklists and to develop new checklists for specific methodologies, requiring the application of multiple checklists. As methods develop, they become increasingly specialised and heterogeneous. I think there’s little hope for checklists in this context unless they’re pared down and used as a reminder of the more complex guidance that’s needed to specify suitable methods and achieve adequate reporting. ‘Check your checklist’ is a useful refrain, though I reckon ‘chuck your checklist’ can sometimes be a better strategy.
A systematic review of dimensions evaluating patient experience in chronic illness. Health and Quality of Life Outcomes [PubMed] Published 21st January 2019
Back to PROMs and PRE(xperience)Ms. This study sets out to understand what it is that patient-reported measures are being used to capture in the context of chronic illness. The authors conducted a systematic review, screening 2,375 articles and ultimately including 107 articles that investigated the measurement properties of chronic (physical) illness PROMs and PREMs.
29 questionnaires were about (health-related) quality of life, 19 about functional status or symptoms, 20 on feelings and attitudes about illness, 19 assessing attitudes towards health care, and 20 on patient experience. The authors provide some nice radar charts showing the percentage of questionnaires that included each of 12 dimensions: i) physical, ii) functional, iii) social, iv) psychological, v) illness perceptions, vi) behaviours and coping, vii) effects of treatment, viii) expectations and satisfaction, ix) experience of health care, x) beliefs and adherence to treatment, xi) involvement in health care, and xii) patient’s knowledge.
The study supports the idea that a patient’s lived experience of illness and treatment, and adaptation to that, has been judged to be important in addition to quality of life indicators. The authors recommend that no measure should try to capture everything because there are simply too many concepts that could be included. Rather, researchers should specify the domains of interest and clearly define them for instrument development.
Credits