My quality-adjusted life year

Why did I do it?

I have evaluated lots of services and been involved in trials where I have asked people to collect EQ-5D data. During this time several people have complained to me about having to collect EQ-5D data so I thought I would have a ‘taste of my own medicine’. I measured my health-related quality of life (HRQoL) using EQ-5D-3L, EQ-5D-VAS, and EQ-5D-5L, every day for a year (N=1). I had the EQ-5D on a spreadsheet on my smartphone and prompted myself to do it at 9 p.m. every night. I set a target of never being more than three days late in doing it, which I missed twice through the year. I also recorded health-related notes for some days, for instance, 21st January said “tired, dropped a keytar on toe (very 1980s injury)”.

By doing this I wanted to illuminate issues around anchoring, ceiling effects and ideas of health and wellness. With a big increase in wearable tech and smartphone health apps this type of big data collection might become a lot more commonplace. I have not kept a diary since I was about 13 so it was an interesting way of keeping track on what was happening, with a focus on health. Starting the year I knew I had one big life event coming up: a new baby due in early March. I am generally quite healthy, a bit overweight, don’t get enough sleep. I have been called a hypochondriac by people before, typically complaining of headaches, colds and sore throats around six months of the year. I usually go running once or twice a week.

From the start I was very conscious that I felt I shouldn’t grumble too much, that EQ-5D was mainly used to measure functional health in people with disease, not in well people (and ceiling effects were a feature of the EQ-5D). I immediately felt a ‘freedom’ of the greater sensitivity of the EQ-5D-5L when compared to the 3L so I could score myself as having slight problems with the 5L, but not that they were bad enough to be ‘some problems’ on the 3L.

There were days when I felt a bit achey or tired because I had been for a run, but unless I had an actual injury I did not score myself as having problems with pain or mobility because of this; generally if I feel achey from running I think of that as a good thing as having pushed myself hard, ‘no pain no gain’. I also started doing yoga this year which made me feel great but also a bit achey sometimes. But in general I noticed that one of the main problems I had was fatigue which is not explicitly covered in the EQ-5D but was reflected sometimes as being slightly impaired on usual activities. I also thought that usual activities could be impaired if you are working and travelling a lot, as you don’t get to do any of the things you enjoy doing like hobbies or spending time with family, but this is more of a capability question whereas the EQ-5D is more functional.

How did my HRQoL compare?

I matched up my levels on the individual domains to EQ-5D-3L and 5L index scores based on UK preference scores. The final 5L value set may still change; I used the most recent published scores. I also matched my levels to a personal 5L value set which I did using this survey which uses discrete choice experiments and involves comparing a set of pairs of EQ-5D-5L health states. I found doing this fascinating and it made me think about how mutually exclusive the EQ-5D dimensions are, and whether some health states are actually implausible: for instance, is it possible to be in extreme pain but not have any impairment on usual activities?

Surprisingly, my average EQ-5D-3L index score (0.982) was higher than the population averages for my age group (for England age 35-44 it is 0.888 based on Szende et al 2014); I expected them to be lower. In fact my average index scores were higher than the average for 18-24 year olds (0.922). I thought that measuring EQ-5D more often and having more granularity would lead to lower average scores but it actually led to high average scores.

My average score from the personal 5L value set was slightly higher than the England population value set (0.983 vs 0.975). Digging into the data, the main differences were that I thought that usual activities were slightly more important, and pain slightly less important, than the general population. The 5L (England tariff) correlated more closely with the VAS than the 3L (r2 =0.746 vs. r2 =0.586) but the 5L (personal tariff) correlated most closely with the VAS (r2 =0.792). So based on my N=1 sample, this suggests that the 5L is a better predictor of overall health than the 3L, and that the personal value set has validity in predicting VAS scores.

Figure 1. My EQ-5D-3L index score [3L], EQ-5D-5L index score (England value set) [5L], EQ-5DL-5L index score (personal value set) [5LP], and visual analogue scale (VAS) score divided by 100 [VAS/100].

Reflection

I definitely regretted doing the EQ-5D every day and was glad when the year was over! I would have preferred to have done it every week but I think that would have missed a lot of subtleties in how I felt from day to day. On reflection the way I was approaching it was that the end of each day I would try to recall if I was stressed, or if anything hurt, and adjust the level on the relevant dimension. But I wonder if I was prompted at any moment during the day as to whether I was stressed, had some mobility issues, or pain, would I say I did? It makes me think about Kahneman and Riis’s ‘remembering brain’ and ‘experiencing brain’. Was my EQ-5D profile a slave to my ‘remembering brain’ rather than my ‘experiencing brain’?

One thing when my score was low for a few days was when I had a really painful abscess on my tooth. At the time I felt like the pain was unbearable so had a high pain score, but looking back I wonder if it was that bad, but I didn’t want to retrospectively change my score. Strangely, I had the flu twice in this year which gave me some health decrements, which I don’t think has ever happened to me before (I don’t think it was just ‘man flu’!).

I knew that I was going to have a baby this year but I didn’t know that I would spend 18 days in hospital, despite not being ill myself. This has led me to think a lot more about ‘caregiver effects‘ – the impact of close relatives being ill; it is unnerving spending night after night in hospital, in this case because my wife was very ill after giving birth, and then when my baby son was two months old, he got very ill (both are doing a lot better now). Being in hospital with a sick relative is a strange feeling, stressful and boring at the same time. I spent a long time staring out of the window or scrolling through Twitter. When my baby son was really ill he would not sleep and did not want to be put down, so my arms were aching after holding him all night. I was lucky that I had understanding managers in work and I was not significantly financially disadvantaged by caring for sick relatives. And glad of the NHS and not getting a huge bill when family members are discharged from hospital.

Health, wellbeing & exercise

Doing this made me think more about the difference between health and wellbeing; there might be days where I was really happy but it wasn’t reflected in my EQ-5D index score. I noticed that doing exercise always led to a higher VAS score – maybe subconsciously I was thinking exercise was increasing my ‘health stock‘. I probably used the VAS score more like an overall wellbeing score rather than just health which is not correct – but I wonder if other people do this as well, and that is why there are less pronounced ceiling effects with the VAS score.

Could trials measure EQ-5D every day?

One advantage of EQ-5D and QALYs over other health outcomes is that they should be measured over a schedule and use the area under the curve. Completing an EQ5D every day has shown me that health does vary every day, but I still think it might be impractical for trial participants to complete an EQ-5D questionnaire every day. Perhaps EQ-5D data could be combined with a simple daily VAS score, possibly out of ten rather than 100 for simplicity.

Joint worst day: 6th and 7th October: EQ-5D-3L index 0.264, EQ-5D-5L index 0.724; personal EQ-5D-5L index 0.824; VAS score 60 – ‘abscess on tooth, couldn’t sleep, face swollen’.

Joint best day: 27th January, 7th September, 11th September, 18th November, 4th December, 30th December: EQ-5D-3L index 1.00;  both EQ-5D-5L index scores 1.00; VAS score 95 – notes include ‘lovely day with family’, ‘went for a run’, ‘holiday’, ‘met up with friends’.

Brendan Collins’s journal round-up for 14th January 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Income distribution and health: can polarization explain health outcomes better than inequality? The European Journal of Health Economics [PubMed] Published 4th December 2018

One of my main interests is health inequalities. I thought polarisation was intuitive; I had seen it in the context of the UK and the US employment market; an increase in poorly-paid ‘McJobs’ and an increase in well-paid ‘MacJobs’, with fewer jobs in the middle. But I hadn’t seen polarisation measured in a statistical way.

Traditional measures of population inequalities like Gini or Atkinson index measure the share of income or the ratio of richest to poorest. But polarisation goes a step further and looks whether there are discrete clusters or groups who have similar incomes. The theory goes that having discrete groups increases social alienation, conflict and socioeconomic comparison and increases health inequalities. Now, I get how you can test statistically for discrete income clusters, and there is an evidence base for the relationship between polarisation and social tension. But groups will cluster based on other factors besides income. I feel like it may be taking a leap to assume a statistical finding (income polarisation) will always represent a sociological construct (alienation) but I confess I don’t know the literature behind this.

China is a country with an increasing degree of polarisation as measured by the Duclos, Esteban and Ray (DER) polarisation indices, and this study suggests that it is related to health status. This study looked at trends in BMI and systolic blood pressure from 1991 to 2011 and found both to increase with increased polarisation. I imagine a lot of other social change went on in this time period in China. I think BMI might not be a good candidate for measuring the effect of polarisation, as being poor is associated with malnourishment and low weight as well as obesity. The authors found that social capital (based on increasing family size, community size, and living in the same community for a long time) had a protective effect against the effects of polarisation on health. Whether this study provides more evidence for the socioeconomic comparison or status anxiety theories of health inequalities, I am not sure; it could equally provide evidence for the neo-materialist (i.e. simply not having enough resources for a healthy life) theories – the relative importance will likely differ by country anyway.

Maybe we don’t need to add more measures of inequality to the mix but I am intrigued. I am just starting my journey with polarisation but I think it has promise.

Two-year evaluation of mandatory bundled payments for joint replacement. The New England Journal of Medicine [PubMed] Published 2nd January 2019

Joint replacements are a big cost to western healthcare systems and often delayed or rationed (partly because replacement joints may only have a 10-20 year lifespan on average). In the UK, for instance, joint replacements have been rationed based on factors like BMI or pain levels (in my opinion, often in an arbitrary way to save money).

This paper found that having a bundled payments and penalties model (Comprehensive Care for Joint Replacement; CJR) for optimal care around hip and knee replacements reduced Medicare spending per episode compared to areas that did not pilot the programme. The overall difference was small in absolute terms at $812 against a total cost of around $24,000 per episode. The programme involves the hospital meeting a set of performance measures, and if they can do so at a lower cost, any savings are shared between the hospital and the payer. Cost savings were mainly driven by a reduction in patients being discharged to post-acute care facilities. Rates of complex patients were similar between pilot and control areas – this is important because a lower rate of complex cases in the CJR trial areas might indicate hospitals ‘cherry picking’ easier to treat, less expensive cases. Also, rates of complications were not significantly different between the CJR pilot areas and controls.
This paper suggests that having this kind of bundled payment programme can save money while maintaining quality.

Association of the Hospital Readmissions Reduction Program with mortality among Medicare beneficiaries hospitalized for heart failure, acute myocardial infarction, and pneumonia. JAMA [PubMed] Published 25th December 2018

Nobody likes being in hospital. But sometimes hospitals are the best places for people. This paper looks at possible unintended consequences of a US programme; the Hospital Readmissions Reduction Program (HRRP) where the Centers for Medicare & Medicaid Services (CMS) impose financial penalties (almost $2billion dollars’ worth since 2012) on hospitals with elevated 30-day readmission rates for patients with heart failure, acute myocardial infarction, and pneumonia. This study compared four time periods (no control group) and found that, after the programme was implemented, death rates for people who had been admitted with pneumonia and heart failure increased, with these increased deaths occurring more in people who had not been readmitted to hospital. The analysis controlled for differences in demographics, comorbidities, and calendar month using propensity scores and inverse probability weighting.

The authors are clear that their results do not establish cause and effect but are concerning nonetheless and worthy of more analysis. Incidentally, there is another paper this week in Health Affairs which suggests that the benefits of the programme in reducing readmissions was overstated.

There has been a similar financial incentive in the English NHS where hospitals are subject to the 30-day readmission rule, meaning they are not paid for people who are readmitted as an emergency within 30 days of being discharged. This is shortly to be abolished for 2019/20. I wonder if there has been similar research on whether this also led to unintended consequences in the NHS. Maybe there is a general lesson here about thinking a bit deeper about the potential outcomes of incentives in healthcare markets?

In these last two papers, we have had two examples of financial incentive programmes from Medicare. The CJR, which seems to have worked, has been dampened down from a mandatory to a voluntary programme, while the HRRP, which may not have worked, has been extended.

Credits

Brendan Collins’s journal round-up for 3rd December 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

A framework for conducting economic evaluations alongside natural experiments. Social Science & Medicine Published 27th November 2018

I feel like Social Science & Medicine is publishing some excellent health economics papers lately and this is another example. Natural experiment methods, like instrumental variables, difference in difference, and propensity matching, are increasingly used to evaluate public health policy interventions. This paper provides a review and a framework for how to incorporate economic evaluation alongside this. And even better, it has a checklist! It goes into some detail in describing each item in the checklist which I think will be really useful. A couple of the items seemed a bit peculiar to me, like talking about “Potential behavioural responses (e.g. ‘nudge effects’)” – I would prefer a more general term like causal mechanism. And it has multi-criteria decision analysis (MCDA) as a potential method. I love MCDA but I think that using MCDA would surely require a whole new set of items on the checklist, for instance, to record how MCDA weights have been decided. (For me, saying that CEA is insufficient so we should use MCDA instead is like saying I find it hard to put IKEA furniture together so I will make my own furniture from scratch.) My hope with checklists is that they actually improve practice, rather than just being used in a post hoc way to include a few caveats and excuses in papers.

Autonomy, accountability, and ambiguity in arm’s-length meta-governance: the case of NHS England. Public Management Review Published 18th November 2018

It has been said that NICE in England serves a purpose of insulating politicians from the fallout of difficult investment decisions, for example recommending that people with mild Alzheimers disease do not get certain drugs. When the coalition government gained power in the UK in 2010, there was initially talk that NICE’s role of approving drugs may be reduced. But the government may have realised that NICE serve a useful role of being a focus of public and media anger when new drugs are rejected on cost-effectiveness grounds. And so it may be with NHS England (NHSE), which according to this paper, as an arms-length body (ALB), has powers that exceed what was initially planned.

This paper uses meta-governance theory, examining different types of control mechanisms and the relationship between the ALB and the sponsor (Department for Health and Social Care), and how they impact on autonomy and accountability. It suggests that NHSE is operating at a macro, policy-making level, rather than an operational, implementation level. Policy changes from NHSE are presented by ministers as coming ‘from’ the NHS but, in reality, the NHS is much bigger than NHSE. NHSE was created to take political interference out of decision-making and let civil servants get on with things. But before reading this paper, it had not occurred to me how much power NHSE had accrued, and how this may create difficulties in terms of accountability for reasonableness. For instance, NHSE have a very complicated structure and do not publish all of their meeting minutes so it is difficult to understand how investment decisions are made. It may be that the changes that have happened in the NHS since 2012 were intended to involve healthcare professionals more in local investment decisions. But actually, a lot of power in terms of shaping the balance of hierarchies, markets and networks has ended up in NHSE, sitting in a hinterland between politicians in Whitehall and local NHS organisations. With a new NHS Plan reportedly delayed because of Brexit chaos, it will be interesting to see what this plan says about accountability.

How health policy shapes healthcare sector productivity? Evidence from Italy and UK. Health Policy [PubMed] Published 2nd November 2018

This paper starts with an interesting premise: the English and Italian state healthcare systems (the NHS and the SSN) are quite similar (which I didn’t know before). But the two systems have had different priorities in the time period from 2004-2011. England focused on increasing activity, reducing waiting times and quality improvements while Italy focused on reducing hospital beds as well as reducing variation and unnecessary treatments. This paper finds that productivity increased more quickly in the NHS than the SSN from 2004-2011. This paper is ambitious in its scope and the data the authors have used. The model uses input-specific price deflators, so it includes the fact that healthcare inputs increase in price faster than other industries but treats this as exogenous to the production function. This price inflation may be because around 75% of costs are staff costs, and wage inflation in other industries produces wage inflation in the NHS. It may be interesting in future to analyse to what extent the rate of inflation for healthcare is inevitable and if it is linked in some way to the inputs and outputs. We often hear that productivity in the NHS has not increased as much as other industries, so it is perhaps reassuring to read a paper that says the NHS has performed better than a similar health system elsewhere.

Credits