Thesis Thursday: Luke Wilson

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Luke Wilson who has a PhD from Lancaster University. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
Essays on the economics of alcohol and risky behaviours
Supervisors
Colin P. Green, Bruce Hollingsworth, Céu Caixeiro Mateus
Repository link
https://doi.org/10.17635/lancaster/thesis/636

What inspired your research and how did ‘attractiveness’ enter the picture?

Without trying to sound like I have a problem, I find the subject of alcohol fascinating. The history of it, how it is perceived in society, how our behaviours around it have changed over time, not to mention it tastes pretty damn good!

Our attitude to alcohol is fascinating and diverse. Over 6.5 million people have visited Munich in the last month alone to attend the world’s largest beer festival Oktoberfest, drinking more than 7.3 million litres of beer. However, 2020 will be the 100-year anniversary of the introduction of prohibition in the United States. Throughout history, alcohol consumption has been portrayed as both a positive and negative commodity in society.

For my thesis, I wanted to understand individuals’ current attitudes to drinking alcohol; whether they are affected by legal restrictions such as being constrained by the minimum legal drinking age of 18 in the UK, whether their attitudes have changed over their life course, and how alcohol fits among a wider variety of risky behaviours such as smoking and illicit drug use.

As for how did ‘attractiveness’ enter the picture, I was searching for datasets that allow for longitudinal analysis, as well as contain information on risky behaviours, and I stumbled upon the data that asked the interviewers to rate the attractiveness of the respondent. My first thought was what a barbaric question to ask, but I quickly realised that the question is used a lot in determining the ‘beauty premia’ in the labour market. However, nobody has examined how these ‘beauty premia’ might come into effect while still at school.

Are people perceived to be more attractive at an advantage or a disadvantage in this context?

The current literature provides a compelling view that there are sizeable labour market returns to attractiveness in the United States (Fletcher, 2009; Stinebrickener et al., 2019). What is not well understood, and where our research fits in, is how physical attractiveness influences earlier, consequential, decisions. The previous literature seeks to provide, in essence, the effect of attractiveness on labour market outcomes conditional on individual characteristics, both demographic and ‘pre-market’. However, attractiveness is also likely to change both the opportunities and costs of a variety of behaviours during adolescence.

Exploiting the interviewer variations in ratings of attractiveness, we found that attractiveness of adolescents has marked effects on a range of risky behaviours. For instance, more attractive teens are less likely to smoke than teens of average or than lower attractiveness teens. However, attractiveness is associated with higher teen alcohol consumption. Attractive females, in particular, are substantially more likely to have consumed alcohol in the past twelve months, than those of or below average attractiveness.

How did you model the role of the minimum legal drinking age in the UK?

I was highly unoriginal and estimated the effect of the minimum legal drinking age in the UK using a regression discontinuity design approach, like that of Carpenter and Dobkin (2009). I jest but it is one of the most effective ways to estimate a causal effect of a particular law/policy that is triggered by age, especially for the UK which has not changed its legal drinking age.

Where our research deviates is that we focus on the law itself and analyse how an individual’s consumption of alcohol in a particular school year may differ at the cut-off (aged 18). For example, do those born in September purchase alcohol for themselves and their younger friends or do we all adhere to the laws that govern us and wait patiently…

Are younger people drinking less, nowadays?

The short answer is yes! Evidence from multiple British surveys shows a consistent pattern over 10-15 years of reduced participation in drinking, reduced consumption levels among drinkers, reduced prevalence of drunkenness, and less positive attitudes towards alcohol in young adults aged 16 to 24.

Friends of mine at the University of Sheffield (Oldham et al., 2018) have sought to unravel the decline in youth drinking further and find evidence that younger drinkers are consuming alcohol less often and in smaller quantities. They find that, among those who were drinkers, the percentage of 16-24 year-olds who drank in the last week fell from 76% to 60% between 2002 and 2016, while for 11-15 year-olds it fell from 35% to 19%. Additionally, alongside declines in youth drinking, the proportion of young adults who had ever tried smoking fell from 43% in 1998 to 17% in 2016.

While we are witnessing this decline, the jury is still out as to why it is happening. Explanations so far include that increases in internet use (social media) and online gaming are changing the way young people spend their leisure time. Additionally, economic factors may play a role, such as the increase in the cost of alcohol, as well as the increase in tuition fees and housing costs meaning that young adults have less disposable income.

What were some of the key methodological challenges you faced in your research?

The largest methodological problem I faced throughout my PhD was finding suitable data to examine the effect of the minimum legal drinking age in the setting of the UK. One of the key underlying components in a regression discontinuity design is the running variable. The running variable I use is age in months of the respondents, which is calculated using the date in which the survey interview took place as well as the month and year of birth of the respondent. Unfortunately, due to issues with data being disclosive, it is very difficult to obtain data that have these variables as well as suitable questions regarding alcohol consumption. Luckily, the General Household Survey (Special Licence version) had the variables I needed to conduct the analysis, albeit only between 1998 and 2007.

How might your research inform policymakers seeking to discourage risky behaviours?

Definitely a difficult question to answer, especially given that one of my chapters uses interviewer variations in ratings of attractiveness of the respondents, so I have stayed well clear from drawing individual policy recommendations from that chapter. That said, these results are important for a number of interrelated reasons. Previous labour market research demonstrates marked effects of attractiveness. My results suggest that important pre-market effects of attractiveness on individual behaviour are likely to be consequential for both labour market performance and important pre-market investments. In this sense, the findings suggest that physical attractiveness provides another avenue for understanding non-cognitive traits that are important in child and adolescent development and carry lifetime consequences.

The chapter on the minimum legal drinking age provides intriguing results regarding the effectiveness of policies that impose limits on ‘consumption’ through age-restrictive policies; whether they are enough on their own or merely delay consumption. This is especially relevant given that there is currently a discussion about increasing the minimum legal tobacco purchasing age to 21 and increasing the age in which you can buy a national lottery ticket from age 16 to 18 in the UK.

Chris Sampson’s journal round-up for 14th October 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Transparency in health economic modeling: options, issues and potential solutions. PharmacoEconomics [PubMed] Published 8th October 2019

Reading this paper was a strange experience. The purpose of the paper, and its content, is much the same as a paper of my own, which was published in the same journal a few months ago.

The authors outline what they see as the options for transparency in the context of decision modelling, with a focus on open source models and a focus on for whom the details are transparent. Models might be transparent to a small number of researchers (e.g. in peer review), to HTA agencies, or to the public at large. The paper includes a figure showing the two aspects of transparency, termed ‘reach’ and ‘level’, which relate to the number of people who can access the information and the level of detail made available. We provided a similar figure in our paper, using the terms ‘breadth’ and ‘depth’, which is at least some validation of our idea. The authors then go on to discuss five ‘issues’ with transparency: copyright, model misuse, confidential data, software, and time/resources. These issues are framed as questions, to which the authors posit some answers as solutions.

Perhaps inevitably, I think our paper does a better job, and so I’m probably over-critical of this article. Ours is more comprehensive, if nothing else. But I also think the authors make a few missteps. There’s a focus on models created by academic researchers, which oversimplifies the discussion somewhat. Open source modelling is framed as a more complete solution than it really is. The ‘issues’ that are discussed are at points framed as drawbacks or negative features of transparency, which they aren’t. Certainly, they’re challenges, but they aren’t reasons not to pursue transparency. ‘Copyright’ seems to be used as a synonym for intellectual property, and transparency is considered to be a threat to this. The authors’ proposed solution here is to use licensing fees. I think that’s a bad idea. Levying a fee creates an incentive to disregard copyright, not respect it.

It’s a little ironic that both this paper and my own were published, when both describe the benefits of transparency in terms of reducing “duplication of efforts”. No doubt, I read this paper with a far more critical eye than I normally would. Had I not published a paper on precisely the same subject, I might’ve thought this paper was brilliant.

If we recognize heterogeneity of treatment effect can we lessen waste? Journal of Comparative Effectiveness Research [PubMed] Published 1st October 2019

This commentary starts from the premise that a pervasive overuse of resources creates a lot of waste in health care, which I guess might be true in the US. Apparently, this is because clinicians have an insufficient understanding of heterogeneity in treatment effects and therefore assume average treatment effects for their patients. The authors suggest that this situation is reinforced by clinical trial publications tending to only report average treatment effects. I’m not sure whether the authors are arguing that clinicians are too knowledgable and dependent on the research, or that they don’t know the research well enough. Either way, it isn’t a very satisfying explanation of the overuse of health care. Certainly, patients could benefit from more personalised care, and I would support the authors’ argument in favour of stratified studies and the reporting of subgroup treatment effects. The most insightful part of this paper is the argument that these stratifications should be on the basis of observable characteristics. It isn’t much use to your general practitioner if personalisation requires genome sequencing. In short, I agree with the authors’ argument that we should do more to recognise heterogeneity of treatment effects, but I’m not sure it has much to do with waste.

No evidence for a protective effect of education on mental health. Social Science & Medicine Published 3rd October 2019

When it comes to the determinants of health and well-being, I often think back to my MSc dissertation research. As part of that, I learned that a) stuff that you might imagine to be important often isn’t and b) methodological choices matter a lot. Though it wasn’t the purpose of my study, it seemed from this research that higher education has a negative effect on people’s subjective well-being. But there isn’t much research out there to help us understand the association between education and mental health in general.

This study add to a small body of literature on the impact of changes in compulsory schooling on mental health. In (West) Germany, education policy was determined at the state level, so when compulsory schooling was extended from eight to nine years, different states implemented the change at different times between 1949 and 1969. This study includes 5,321 people, with 20,290 person-year observations, from the German Socio-Economic Panel survey (SOEP). Inclusion was based on people being born seven years either side of the cutoff birth year for which the longer compulsory schooling was enacted, with a further restriction to people aged between 50 and 85. The SOEP includes the SF-12 questionnaire, which includes a mental health component score (MCS). There is also an 11-point life satisfaction scale. The authors use an instrumental variable approach, using the policy change as an instrument for years of schooling and estimating a standard two-stage least squares model. The MCS score, life satisfaction score, and a binary indicator for MCS score lower than or equal to 45.6, are all modelled as separate outcomes.

Estimates using an OLS model show a positive and highly significant effect of years of schooling on all three outcomes. But when the instrumental variable model is used, this effect disappears. An additional year of schooling in this model is associated with a statistically and clinically insignificant decrease in the MCS score. Also insignificant was the finding that more years of schooling increases the likelihood of developing symptoms of a mental health disorder (as indicated by the MCS threshold of 45.6) and that life satisfaction is slightly lower. The same model shows a positive effect on physical health, which corresponds with previous research and provides some reassurance that the model could detect an effect if one existed.

The specification of the model seems reasonable and a host of robustness checks are reported. The only potential issue I could spot is that a person’s state of residence at the time of schooling is not observed, and so their location at entry into the sample is used. Given that education is associated with mobility, this could be a problem, and I would have liked to see the authors subject it to more testing. The overall finding – that an additional year of school for people who might otherwise only stay at school for eight years does not improve mental health – is persuasive. But the extent to which we can say anything more general about the impact of education on well-being is limited. What if it had been three years of additional schooling, rather than one? There is still much work to be done in this area.

Scientific sinkhole: the pernicious price of formatting. PLoS One [PubMed] Published 26th September 2019

This study is based on a survey that asked 372 researchers from 41 countries about the time they spent formatting manuscripts for journal submission. Let’s see how I can frame this as health economics… Well, some of the participants are health researchers. The time they spend on formatting journal submissions is time not spent on health research. The opportunity cost of time spent formatting could be measured in terms of health.

The authors focused on the time and wage costs of formatting. The results showed that formatting took a median time of 52 hours per person per year, at a cost of $477 per manuscript or $1,908 per person per year. Researchers spend – on average – 14 hours on formatting a manuscript. That’s outrageous. I have never spent that long on formatting. If you do, you only have yourself to blame. Or maybe it’s just because of what I consider to constitute formatting. The survey asked respondents to consider formatting of figures, tables, and supplementary files. Improving the format of a figure or a table can add real value to a paper. A good figure or table can change a bad paper to a good paper. I’d love to know how the time cost differed for people using LaTeX.

Credits

Chris Sampson’s journal round-up for 30th September 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

A need for change! A coding framework for improving transparency in decision modeling. PharmacoEconomics [PubMed] Published 24th September 2019

We’ve featured a few papers in recent round-ups that (I assume) will be included in an upcoming themed issue of PharmacoEconomics on transparency in modelling. It’s shaping up to be a good one. The value of transparency in decision modelling has been recognised, but simply making the stuff visible is not enough – it needs to make sense. The purpose of this paper is to help make that achievable.

The authors highlight that the writing of analyses, including coding, involves personal style and preferences. To aid transparency, we need a systematic framework of conventions that make the inner workings of a model understandable to any (expert) user. The paper describes a framework developed by the Decision Analysis in R for Technologies in Health (DARTH) group. The DARTH framework builds on a set of core model components, generalisable to all cost-effectiveness analyses and model structures. There are five components – i) model inputs, ii) model implementation, iii) model calibration, iv) model validation, and v) analysis – and the paper describes the role of each. Importantly, the analysis component can be divided into several parts relating to, for example, sensitivity analyses and value of information analyses.

Based on this framework, the authors provide recommendations for organising and naming files and on the types of functions and data structures required. The recommendations build on conventions established in other fields and in the use of R generally. The authors recommend the implementation of functions in R, and relate general recommendations to the context of decision modelling. We’re also introduced to unit testing, which will be unfamiliar to most Excel modellers but which can be relatively easily implemented in R. The role of various tools are introduced, including R Studio, R Markdown, Shiny, and GitHub.

The real value of this work lies in the linked R packages and other online material, which you can use to test out the framework and consider its application to whatever modelling problem you might have. The authors provide an example using a basic Sick-Sicker model, which you can have a play with using the DARTH packages. In combination with the online resources, this is a valuable paper that you should have to hand if you’re developing a model in R.

Accounts from developers of generic health state utility instruments explain why they produce different QALYs: a qualitative study. Social Science & Medicine [PubMed] Published 19th September 2019

It’s well known that different preference-based measures of health will generate different health state utility values for the same person. Yet, they continue to be used almost interchangeably. For this study, the authors spoke to people involved in the development of six popular measures: QWB, 15D, HUI, EQ-5D, SF-6D, and AQoL. Their goal was to understand the bases for the development of the measures and to explain why the different measures should give different results.

At least one original developer for each instrument was recruited, along with people involved at later stages of development. Semi-structured interviews were conducted with 15 people, with questions on the background, aims, and criteria for the development of the measure, and on the descriptive system, preference weights, performance, and future development of the instrument.

Five broad topics were identified as being associated with differences in the measures: i) knowledge sources used for conceptualisation, ii) development purposes, iii) interpretations of what makes a ‘good’ instrument, iv) choice of valuation techniques, and v) the context for the development process. The online appendices provide some useful tables that summarise the differences between the measures. The authors distinguish between measures based on ‘objective’ definitions (QWB) and items that people found important (15D). Some prioritised sensitivity (AQoL, 15D), others prioritised validity (HUI, QWB), and several focused on pragmatism (SF-6D, HUI, 15D, EQ-5D). Some instruments had modest goals and opportunistic processes (EQ-5D, SF-6D, HUI), while others had grand goals and purposeful processes (QWB, 15D, AQoL). The use of some measures (EQ-5D, HUI) extended far beyond what the original developers had anticipated. In short, different measures were developed with quite different concepts and purposes in mind, so it’s no surprise that they give different results.

This paper provides some interesting accounts and views on the process of instrument development. It might prove most useful in understanding different measures’ blind spots, which can inform the selection of measures in research, as well as future development priorities.

The emerging social science literature on health technology assessment: a narrative review. Value in Health Published 16th September 2019

Health economics provides a good example of multidisciplinarity, with economists, statisticians, medics, epidemiologists, and plenty of others working together to inform health technology assessment. But I still don’t understand what sociologists are talking about half of the time. Yet, it seems that sociologists and political scientists are busy working on the big questions in HTA, as demonstrated by this paper’s 120 references. So, what are they up to?

This article reports on a narrative review, based on 41 empirical studies. Three broad research themes are identified: i) what drove the establishment and design of HTA bodies? ii) what has been the influence of HTA? and iii) what have been the social and political influences on HTA decisions? Some have argued that HTA is inevitable, while others have argued that there are alternative arrangements. Either way, no two systems are the same and it is not easy to explain differences. It’s important to understand HTA in the context of other social tendencies and trends, and that HTA influences and is influenced by these. The authors provide a substantial discussion on the role of stakeholders in HTA and the potential for some to attempt to game the system. Uncertainty abounds in HTA and this necessarily requires negotiation and acts as a limit on the extent to which HTA can rely on objectivity and rationality.

Something lacking is a critical history of HTA as a discipline and the question of what HTA is actually good for. There’s also not a lot of work out there on culture and values, which contrasts with medical sociology. The authors suggest that sociologists and political scientists could be more closely involved in HTA research projects. I suspect that such a move would be more challenging for the economists than for the sociologists.

Credits