Ambulance and economics

I have recently been watching the BBC series AmbulanceIt is a fly-on-the-wall documentary following the West Midlands Ambulance Service interspersed with candid interviews with ambulance staff, much in the same vein as other health care documentaries like 24 Hours in A&EAs much as anything it provides a (stylised) look at the conditions on the ground for staff and illustrates how health care institutions are as much social institutions as essential services. In a recent episode, the cost of a hoax call was noted as some thousands of pounds. Indeed, the media and health services often talk about the cost of hoax calls in this way:

Warning for parents as one hoax call costs public £2,465 and diverts ambulance from real emergency call.

Frequent 999 callers cost NHS millions of pounds a year.

Nuisance caller cost the taxpayer £78,000 by making 408 calls to the ambulance service in two years.

But these are accounting costs, not the full economic cost. The first headline almost captures this by suggesting the opportunity cost was attendance at a real emergency call. However, given the way that ambulance resources are deployed and triaged across calls, it is very difficult to say what the opportunity cost is: what would be the marginal benefit of having an additional ambulance crew for the duration of a hoax call? What is the shadow price of an ambulance unit?

Few studies have looked at this question. The widely discussed study by Claxton et al. in the UK, looked at shadow prices of health care across different types of care, but noted that:

Expenditure on, for example, community care, A&E, ambulance services, and outpatients can be difficult to attribute to a particular [program budget category].

One review identified a small number of studies examining the cost-benefit and cost-effectiveness of emergency response services. Estimates of the marginal cost per life saved ranged from approximately $5,000 to $50,000. However, this doesn’t really tell us the impact of an additional crew, nor were many of these studies comparable in terms of the types of services they looked at, and these were all US-based.

There does exist the appropriately titled paper Ambulance EconomicsThis paper approaches the question we’re interested in, in the following way:

The centrepiece of our analysis is what we call the Ambulance Response Curve (ARC). This shows the relationship between the response time for an individual call (r) and the number of ambulances available and not in use (n) at the time the call was made. For example, let us suppose that 35 ambulances are on duty and 10 of them are being used. Then n has the value of 25 when the next call is taken. Ceteris paribus, as increases, we expect that r will fall.

On this basis, one can look at how an additional ambulance affects response times, on average. One might then be able to extrapolate the health effects of that delay. This paper suggests that an additional ambulance would reduce response times by around nine seconds on average for the service they looked at – not actually very much. However, the data are 20 years old, and significant changes to demand and supply over that period are likely to have a large effect on the ARC. Nevertheless, changes in response time of the order of minutes are required in order to have a clinically significant impact on survival, which are unlikely to occur with one additional ambulance.

Taken altogether, the opportunity cost of a hoax call is not likely to be large. This is not to downplay the stupidity of such calls, but it is perhaps reassuring that lives are not likely to be in the balance and is a testament to the ability of the service to appropriately deploy their limited resources.

Credits

ICU triage: a challenge and an opportunity

In a well-publicized snapshot of the challenge of ICU triage, Chang and colleagues wrote:

Critical care services can be life-saving, but many patients admitted to intensive care units (ICUs) are too sick or, conversely, not sick enough to benefit. Intensive care unit overutilization can produce more costly and invasive care without improving outcomes.

Emphasis added. Hyder provides an interesting critique to which Chang and Shapiro respond. In this post, I shall consider over-utilization by those “not sick enough to benefit”: 23.4% of the 808 patients admitted to the UCLA Medical Center in the study by Chang et al. This over-utilization provides both a challenge and a win-win opportunity (better outcomes at lower cost) if we can meet the challenge.

In a forward-looking vision, which some may regard as optimistic, Anesi et al wrote:

In the year 2050 we will unambiguously reimburse healthcare based on value, and so there is good reason to suspect that we will have targeted and reduced many services that provide little or no benefit to patients…

It can be argued that ICU over-utilization, on average, provides no overall benefit, while significantly increasing costs. Gooch and Kahn observed that US spending on critical care represents nearly 3% of GDP, while:

In contrast, the United Kingdom spends only 0.1% of its gross domestic product on critical care services, with no evidence of worse patient outcomes and similar life expectancies as in the United States. Although there are many differences between these 2 countries, one significant difference is intensive care unit (ICU) bed supply. The United States has 25 ICU beds per 100 000 people, as compared with 5 per 100 000 in the United Kingdom. As a result, ICU case-mix differs substantially. In the United Kingdom, the majority of ICU patients are at high risk for death, whereas in the United States, many patients are admitted to the ICU for observation.

As observed by Halpern, these differences come at a significant cost in the US:

The number of intensive care unit (ICU) beds in the United States has continued to increase over the last 3 decades, as have ICU utilization rates and costs, and this despite the lack of any federal, regional, or critical care society mandates to justify these increases. Some experts believe that the increase in the number of ICU beds has led to inappropriate use of these beds by patients who are either too healthy or too sick to benefit from intensive care. This may in part explain the stable national ICU occupancy rate of approximately 68% between 1985 and 2010 and suggests that ICU utilization has simply risen to meet the increased number of beds.

Emphasis added. I shall consider here only ICU usage by patients too healthy to benefit. Although the economics behind reducing ICU over-utilization by “those not sick enough to benefit” appears simple, the underlying cause is in fact likely complex.

icu-costs-fig-1

This one appears easy: lower costs and potentially better outcomes

At the same time, I recall several caveats, well known to health economists, but important in planning and communication:

  1. We expect ICUs to be available when needed, including for emergencies and disasters,
  2. ICUs have high fixed costs,
  3. Decision-making is critical: incremental costs of adding capacity become fixed costs in the future.

Chris Sampson recently reviewed a study aimed at overconsumption or misconsumption (a consequence of over-utilization). The authors of that paper suggest that “cultural change might be required to achieve significant shifts in clinical behaviour.” Chris laments that this study did not ‘dig deeper’; here we aim to dig deeper in one specific area: ICU triage for patients “not sick enough to benefit.” More questions than answers at this stage, but hopefully the questions will ultimately lead to answers.

I begin by stepping back: economic decisions frequently involve compromises in allocating scarce resources. Decisions in health economics are frequently no different. How scarce are ICU resources? What happens if they are less scarce? What are the costs? Increasing availability can frequently lead to increased utilization, a phenomenon called “demand elasticity”. For example, increasing expressway/motorway capacity “can lead to increased traffic as new drivers seize the opportunity to travel on the larger road”, and thus no reduction in travel time. Gooch and Kahn further note that:

The presence of demand elasticity in decisions regarding ICU care has major implications for health care delivery and financing. Primarily, this indicates it is possible to reduce the costs of US hospital care by constraining ICU bed supply, perhaps through certificate of need laws or other legislation.

I offer a highly simplified sketch of how ICU over-utilization by those “not sick enough to benefit” is one driver of a vicious cycle in ICU cost growth.

icu-costs-fig-2

ICU over-utilization by patients “not sick enough to benefit” as a driver for ICU demand elasticity

Who (if anyone) is at fault for this ICU vicious cycle? Chang and Shapiro offer one suggestion:

For medical conditions where ICU care is frequently provided, but may not always be necessary, institutions that utilize ICUs more frequently are more likely to perform invasive procedures and have higher costs but have no improvement in hospital mortality. Hospitals had similar ICU utilization patterns across the 4 medical conditions, suggesting that systematic institutional factors may influence decisions to potentially overutilize ICU care.

Emphasis added. I note that demand elasticity is not in itself bad; it must simply be recognized, controlled and used appropriately. As part of a discussion in print on the role of cost considerations in medical decisions, Du and Kahn write:

Although we argue that costs should not be factored into medical decision-making in the ICU, this does not mean that we should not strive toward healthcare cost reduction in other ways. One strategy is to devise systems of care that prevent unnecessary or unwanted ICU admissions—given the small amount of ICU care that is due to discretionary spending, the only real way to reduce ICU costs is to prevent ICU admissions in the first place.

Du and Kahn also argue for careful cost-effectiveness analyses, such as that supported by NICE in the UK:

These programs limit use of treatments that are not cost-effective, taking cost decisions out of the hands of physicians and putting them where they belong: in the hands of society at large… We will achieve real ICU savings only by encouraging a society committed to system-based reforms.

Emphasis added. One can debate “taking cost decisions out of the hands of physicians”, though Guidet & Beale‘s and Capuzzo & Rhodes‘s argument for more physician awareness of cost might provide a good intermediate position in this debate.

Finally, increasing ICU supply (that is, ICU beds) in response to well-conceived increases in ICU demand is not in itself bad; ICU supply must be able to respond to demands imposed by disasters or other emergencies. We need to seek out novel ways to provide this capacity without incurring potentially unnecessary fixed costs, perhaps from region-wide stockpiling of supplies and equipment, and region-wide pools of on-call physicians and other ICU personnel. In summary, current health-related literature offers a wide-ranging discussion of the growing costs of intensive care; in my opinion: more questions than answers at this stage, but hopefully the questions will ultimately lead to answers.

Credits

Weekend effect explainer: why we are not the ‘climate change deniers of healthcare’

The statistics underlying the arguments around the weekend effect are complicated. Despite over a hundred empirical studies on the topic, and an observed increase in the risk of mortality for weekend admissions in multiple countries, there is still no real consensus on what is going on. We have previously covered the arguments on this blog and suggested that the best explanation for the weekend effect is that healthier patients are less likely to be admitted to hospital at the weekend. Nevertheless, a little knowledge can be a dangerous thing (the motto of the Dunning-Kruger effect), and some people can be very confident about the interpretation of the statistics despite their complicated nature. For example, one consultant nephrologist wrote in a comment on a recent article that those who attribute the weekend effect to differences in admission are becoming ‘the climate change deniers of healthcare’ as they are not taking into account all the risk-adjusted analyses!

It may certainly be the case that there is a reduction in healthcare quality at the weekend. But it is also important for policy makers to understand that it is still possible to observe a weekend effect even with quite comprehensive mortality risk adjustment. The image below links to an app that simulates multiple weekend effect studies from a model where there is no weekend effect but potentially different chances of admission at the weekend and on weekdays. We are assuming that those who turn up to A&E but are not admitted and sent home are the healthiest patients. In the app, you can change the parameters: the proportion of attendances that are admitted on weekends and weekdays, the mortality rate among patients who are admitted, and, crucially, the amount of variation in patient mortality explained (a sort of “R-squared”) by our risk adjustment. It will display crude and adjusted odds ratios as well as a distribution of possible results from similar studies. (Be patient though, simulating lots of large studies seems to take a while on the server!).

weekendeffect

As is evident, even with a very high proportion of variance explained, we can still get an odds ratio not equal to one and an observed weekend effect if the proportion of attendances who are admitted differs between weekend and weekday. And, with the very large sample sizes often used for these studies, these will likely appear “statistically significant“. Recent evidence from the UK has suggested that 27% of A&E attendances are admitted at the weekend compared to 30% on a weekday. Even when we can explain 90% of the variation in mortality, we can still get a ‘weekend effect’ with these small differences in propensity for admission. And, if there is any element of publication bias, or the ‘garden of forking paths’ [PDF] we will see lots of statistically significant weekend effect studies published.

When there is a misunderstanding about statistics, one often blames the audience for not understanding, but it is often the case that an idea has just not been explained well enough. I can’t judge whether little web apps will actually help explain concepts like this, but hopefully it’s a step in the right direction.

Credits