Alastair Canaway’s journal round-up for 10th July 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Use-of-time and health-related quality of life in 10- to 13-year-old children: not all screen time or physical activity minutes are the same. Quality of life Research [PubMedPublished 3rd July 2017

“If you watch too much TV, it’ll make your eyes square” – something I heard a lot as a child. This first paper explores whether this is true (sort of) by examining associations between aspects of time use and HRQL in children aged 10-13 (disclaimer: I peer reviewed it and was pleased to see them incorporate my views). This paper aims to examine how different types of time use are linked to HRQL. Time use was examined by the Multimedia Activity Recall for Children and Adolescents (MARCA) which separates out time into physical activity (sport, active transport, and play), screen time (TV, videogames, computer use), and sleep. The PedsQL was used to assess HRQL, whilst dual x-ray absorptiometry was used to accurately assess fatness. There were a couple of novel aspects to this study, first, the use of absorptiometry to accurately measure body fat percentage rather than the problematic BMI/skin folds in children; second, separating time out into specific components rather than just treating physical activity or screen time as homogeneous components. The primary findings were that for both genders, fatness (negative), sport (positive) and development stage (negative) were associated with HRQL. For boys, the most important other predictor of HRQL was videogames (negative) whilst predictors for girls included television (negative), active transport (negative) and household income (positive). With the exception of ‘active travel’ for girls, I don’t think any of these findings are particularly surprising. As with all cross-sectional studies of this nature, the authors give caution to the results: inability to demonstrate causality. Despite this, it opens the door for various possibilities for future research, and ideas for shaping future interventions in children this age.

Raise the bar, not the threshold value: meeting patient preferences for palliative and end-of-life care. PharmacoEconomics – Open Published 27th June 2017

Health care ≠ end of life care. Whilst health care seeks to maximise health, can the same be said for end of life care? Probably not. This June saw an editorial elaborating on this issue. Health is an important facet of end of life care. However, there are other substantial objects of value in this context e.g. preferences for place of care, preparedness, reducing family burdens etc. Evidence suggests that people at end of life can value these ‘other’ objects more than health status or life extension. Thus there is value beyond that captured by health. This is an issue for the QALY framework where health and length of life are the sole indicators of benefit. The editorial highlights that this is not people wishing for higher cost-per-QALY thresholds at end of life, instead, it is supporting the valuation of key elements of palliative care within the end of life context. It argues that palliative care interventions often are not amenable to integration with survival time in a QALY framework, this effectively implies that end of life care interventions should be evaluated in a separate framework to health care interventions altogether. The editorial discusses the ICECAP-Supportive Care Measure (designed for economic evaluation of end of life measures) as progress within this research context. An issue with this approach is that it doesn’t address allocative efficiency issues (and comparability) with ‘normal’ health care interventions. However, if end of life care is evaluated separately to regular healthcare, it will lead to better decisions within the EoL context. There is merit to this justification, after all, end of life care is often funded via third parties and arguments could, therefore, be made for adopting a separate framework. This, however, is a contentious area with lots of ongoing interest. For balance, it’s probably worth pointing out Chris’s (he did not ask me to put this in!) book chapter which debates many of these issues, specifically in relation to defining objects of value at end of life and whether the QALY should be altogether abandoned at EoL.

Investigating the relationship between costs and outcomes for English mental health providers: a bi-variate multi-level regression analysis. European Journal of Health Economics [PubMedPublished 24th June 2017

Payment systems that incentivise cost control and quality improvements are increasingly used. In England, until recently, mental health services have been funded via block contracts that do not necessarily incentivise cost control and payment has not been linked to outcomes. The National Tariff Payment System for reimbursement has now been introduced to mental health care. This paper harnesses the MHMDS (now called MHSDS) using multi-level bivariate regression to investigate whether it is possible to control costs without negatively affecting outcomes. It does this by examining the relationship between costs and outcomes for mental health providers. Due to the nature of the data, an appropriate instrumental variable was not available, and so it is important to note that the results do not imply causality. The primary results found that after controlling for key variables (demographics, need, social and treatment) there was a minuscule negative correlation between residual costs and outcomes with little evidence of a meaningful relationship. That is, the data suggest that outcome improvements could be made without incurring a lot more cost. This implies that cost-containment efforts by providers should not undermine outcome-improving efforts under the new payment systems. Something to bear in mind when interpreting the results is that there was a rather large list of limitations associated with the analysis, most notably that the analysis was conducted at a provider level. Although it’s continually improving, there still remain issues with the MHMDS data: poor diagnosis coding, missing outcome data, and poor quality of cost data. As somebody who is yet to use MHMDS data, but plans to in the future, this was a useful paper for generating ideas regarding what is possible and the associated limitations.

Credits

Advertisements

Chris Sampson’s journal round-up for 22nd May 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

The effect of health care expenditure on patient outcomes: evidence from English neonatal care. Health Economics [PubMed] Published 12th May 2017

Recently, people have started trying to identify opportunity cost in the NHS, by assessing the health gains associated with current spending. Studies have thrown up a wide range of values in different clinical areas, including in neonatal care. This study uses individual-level data for infants treated in 32 neonatal intensive care units from 2009-2013, along with the NHS Reference Cost for an intensive care cot day. A model is constructed to assess the impact of changes in expenditure, controlling for a variety of variables available in the National Neonatal Research Database. Two outcomes are considered: the in-hospital mortality rate and morbidity-free survival. The main finding is that a £100 increase in the cost per cot day is associated with a reduction in the mortality rate of 0.36 percentage points. This translates into a marginal cost per infant life saved of around £420,000. Assuming an average life expectancy of 81 years, this equates to a present value cost per life year gained of £15,200. Reductions in the mortality rate are associated with similar increases in morbidity. The estimated cost contradicts a much higher estimate presented in the Claxton et al modern classic on searching for the threshold.

A comparison of four software programs for implementing decision analytic cost-effectiveness models. PharmacoEconomics [PubMed] Published 9th May 2017

Markov models: TreeAge vs Excel vs R vs MATLAB. This paper compares the alternative programs in terms of transparency and validation, the associated learning curve, capability, processing speed and cost. A benchmarking assessment is conducted using a previously published model (originally developed in TreeAge). Excel is rightly identified as the ‘ubiquitous workhorse’ of cost-effectiveness modelling. It’s transparent in theory, but in practice can include cell relations that are difficult to disentangle. TreeAge, on the other hand, includes valuable features to aid model transparency and validation, though the workings of the software itself are not always clear. Being based on programming languages, MATLAB and R may be entirely transparent but challenging to validate. The authors assert that TreeAge is the easiest to learn due to its graphical nature and the availability of training options. Save for complex VBA, Excel is also simple to learn. R and MATLAB are equivalently more difficult to learn, but clearly worth the time saving for anybody expecting to work on multiple complex modelling studies. R and MATLAB both come top in terms of capability, with Excel falling behind due to having fewer statistical facilities. TreeAge has clearly defined capabilities limited to the features that the company chooses to support. MATLAB and R were both able to complete 10,000 simulations in a matter of seconds, while Excel took 15 minutes and TreeAge took over 4 hours. For a value of information analysis requiring 1000 runs, this could translate into 6 months for TreeAge! MATLAB has some advantage over R in processing time that might make its cost ($500 for academics) worthwhile to some. Excel and TreeAge are both identified as particularly useful as educational tools for people getting to grips with the concepts of decision modelling. Though the take-home message for me is that I really need to learn R.

Economic evaluation of factorial randomised controlled trials: challenges, methods and recommendations. Statistics in Medicine [PubMed] Published 3rd May 2017

Factorial trials randomise participants to at least 2 alternative levels (for example, different doses) of at least 2 alternative treatments (possibly in combination). Very little has been written about how economic evaluations ought to be conducted alongside such trials. This study starts by outlining some key challenges for economic evaluation in this context. First, there may be interactions between combined therapies, which might exist for costs and QALYs even if not for the primary clinical endpoint. Second, transformation of the data may not be straightforward, for example, it may not be possible to disaggregate a net benefit estimation with its components using alternative transformations. Third, regression analysis of factorial trials may be tricky for the purpose of constructing CEACs and conducting value of information analysis. Finally, defining the study question may not be simple. The authors simulate a 2×2 factorial trial (0 vs A vs B vs A+B) to demonstrate these challenges. The first analysis compares A and B against placebo separately in what’s known as an ‘at-the-margins’ approach. Both A and B are shown to be cost-effective, with the implication that A+B should be provided. The next analysis uses regression, with interaction terms demonstrating the unlikelihood of being statistically significant for costs or net benefit. ‘Inside-the-table’ analysis is used to separately evaluate the 4 alternative treatments, with an associated loss in statistical power. The findings of this analysis contradict the findings of the at-the-margins analysis. A variety of regression-based analyses is presented, with the discussion focussed on the variability in the estimated standard errors and the implications of this for value of information analysis. The authors then go on to present their conception of the ‘opportunity cost of ignoring interactions’ as a new basis for value of information analysis. A set of 14 recommendations is provided for people conducting economic evaluations alongside factorial trials, which could be used as a bolt-on to CHEERS and CONSORT guidelines.

Credits

Chris Sampson’s journal round-up for 16th January 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Competition and quality indicators in the health care sector: empirical evidence from the Dutch hospital sector. The European Journal of Health Economics [PubMed] Published 3rd January 2017

In case you weren’t already convinced, this paper presents more evidence to support the notion that (non-price) competition between health care providers is good for quality. The Dutch system is based on compulsory insurance and information on quality of hospital care is made public. One feature of the Dutch health system is that – for many elective hospital services – prices are set following a negotiation between insurers and hospitals. This makes the setting of the study a bit different to some of the European evidence considered to date, because there is scope for competition on price. The study looks at claims data for 3 diagnosis groups – cataract, adenoid/tonsils and bladder tumor – between 2008 and 2011. The authors’ approach to measuring competition is a bit more sophisticated than some other studies’ and is based on actual market share. A variety of quality indicators are used for the 3 diagnosis groups relating mainly to the process of care (rather than health outcomes). Fixed and random effects linear regression models are used to estimate the impact of market share upon quality. Casemix was only controlled for in relation to the proportion of people over 65 and the proportion of women. Where a relationship was found, it tended to be in favour of lower market share (i.e. greater competition) being associated with higher quality. For cataract and for bladder tumor there was a ‘significant’ effect. So in this setting at least, competition seems to be good news for quality. But the effect sizes are neither huge nor certain. A look at each of the quality indicators separately showed plenty of ‘non-significant’ relationships in both directions. While a novelty of this study is the liberalised pricing context, the authors find that there is no relationship between price and quality scores. So even if we believe the competition-favouring results, we needn’t abandon the ‘non-price competition only’ mantra.

Cost-effectiveness thresholds in global health: taking a multisectoral perspective. Value in Health Published 3rd January 2017

We all know health care is not the only – and probably not even the most important – determinant of health. We call ourselves health economists, but most of us are simply health care economists. Rarely do we look beyond the domain of health care. If our goal as researchers is to help improve population health, then we should probably be allocating more of our mental resource beyond health care. The same goes for public spending. Publicly provided education might improve health in a way that the health service would be willing to fund. Likewise, health care might improve educational attainment. This study considers resource allocation decisions using the familiar ‘bookshelf approach’, but goes beyond the unisectoral perspective. The authors discuss a two-sector world of health and education, and demonstrate the ways in which there may be overlaps in costs and outcomes. In short, there are likely to be situations in which the optimal multisectoral decision would be for individual sectors to increase their threshold in order to incorporate the spillover benefits of an intervention in another sector. The authors acknowledge that – in a perfect world – a social-welfare-maximising government would have sufficient information to allocate resources earmarked for specific purposes (e.g. health improvement) across sectors. But this doesn’t happen. Instead the authors propose the use of a cofinancing mechanism, whereby funds would be transferred between sectors as needed. The paper provides an interesting and thought-provoking discussion, and the idea of transferring funds between sectors seems sensible. Personally I think the problem is slightly misspecified. I don’t believe other sectors face thresholds in the same way, because (generally speaking) they do not employ cost-effectiveness analysis. And I’m not sure they should. I’m convinced that for health we need to deviate from welfarism, but I’m not convinced of it for other sectors. So from my perspective it is simply a matter of health vs everything else, and we can incorporate the ‘everything else’ into a cost-effectiveness analysis (with a societal perspective) in monetary terms. Funds can be reallocated as necessary with each budget statement (of which there seem to be a lot nowadays).

Is the Rational Addiction model inherently impossible to estimate? Journal of Health Economics [RePEc] Published 28th December 2016

Saddle point dynamics. Something I’ve never managed to get my head around, but here goes… This paper starts from the problem that empirical tests of the Rational Addiction model serve up wildly variable and often ridiculous (implied) discount rates. That may be part of the reason why economists tend to support the RA model but at the same time believe that it has not been empirically proven. The paper sets out the basis for saddle point dynamics in the context of the RA model, and outlines the nature of the stable and unstable root within the function that determines a person’s consumption over time. The authors employ Monte Carlo estimation of RA-type equations, simulating panel data observations. These simulations demonstrate that the presence of the unstable root may make it very difficult to estimate the coefficients. So even if the RA model can truly represent behaviour, empirical estimation may contradict it. This raises the question of whether the RA model is essentially untestable. A key feature of the argument relates to use of the model where a person’s time horizon is not considered to be infinite. Some non-health economists like to assume it is, which, as the authors wryly note, is not particularly ‘rational’.

Credits