Chris Sampson’s journal round-up for 4th June 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

A qualitative investigation of the health economic impacts of bariatric surgery for obesity and implications for improved practice in health economics. Health Economics [PubMed] Published 1st June 2018

Few would question the ‘economic’ nature of the challenge of obesity. Bariatric surgery is widely recommended for severe cases but, in many countries, the supply is not sufficient to satisfy the demand. In this context, this study explores the value of qualitative research in informing economic evaluation. The authors assert that previous economic evaluations have adopted a relatively narrow focus and thus might underestimate the expected value of bariatric surgery. But rather than going and finding data on what they think might be additional dimensions of value, the authors ask patients. Emotional capital, ‘societal’ (i.e. non-health) impacts, and externalities are identified as theories for the types of value that might be derived from bariatric surgery. These theories were used to guide the development of questions and prompts that were used in a series of 10 semi-structured focus groups. Thematic analysis identified the importance of emotional costs and benefits as part of the ‘socioemotional personal journey’ associated with bariatric surgery. Out-of-pocket costs were also identified as being important, with self-funding being a challenge for some respondents. The information seems useful in a variety of ways. It helps us understand the value of bariatric surgery and how individuals make decisions in this context. This information could be used to determine the structure of economic evaluations or the data that are collected and used. The authors suggest that an EQ-5D bolt-on should be developed for ’emotional capital’ but, given that this ‘theory’ was predefined by the authors and does not arise from the qualitative research as being an important dimension of value alongside the existing EQ-5D dimensions, that’s a stretch.

Developing accessible, pictorial versions of health-related quality-of-life instruments suitable for economic evaluation: a report of preliminary studies conducted in Canada and the United Kingdom. PharmacoEconomics – Open [PubMed] Published 25th May 2018

I’ve been telling people about this study for ages (apologies, authors, if that isn’t something you wanted to read!). In my experience, the need for more (cognitively / communicatively) accessible outcome measures is widely recognised by health researchers working in contexts where this is relevant, such as stroke. If people can’t read or understand the text-based descriptors that make up (for example) the EQ-5D, then we need some alternative format. You could develop an entirely new measure. Or, as the work described in this paper set out to do, you could modify existing measures. There are three descriptive systems described in this study: i) a pictorial EQ-5D-3L by the Canadian team, ii) a pictorial EQ-5D-3L by the UK team, and iii) a pictorial EQ-5D-5L by the UK team. Each uses images to represent the different levels of the different dimensions. For example, the mobility dimension might show somebody walking around unaided, walking with aids, or in bed. I’m not going to try and describe what they all look like, so I’ll just encourage you to take a look at the Supplementary Material (click here to download it). All are described as ‘pilot’ instruments and shouldn’t be picked up and used at this stage. Different approaches were used in the development of the measures, and there are differences between the measures in terms of the images selected and the ways in which they’re presented. But each process referred to conventions in aphasia research, used input from clinicians, and consulted people with aphasia and/or their carers. The authors set out several remaining questions and avenues for future research. The most interesting possibility to most readers will be the notion that we could have a ‘generic’ pictorial format for the EQ-5D, which isn’t aphasia-specific. This will require continued development of the pictorial descriptive systems, and ultimately their validation.

QALYs in 2018—advantages and concerns. JAMA [PubMed] Published 24th May 2018

It’s difficult not to feel sorry for the authors of this article – and indeed all US-based purveyors of economic evaluation in health care. With respect to social judgments about the value of health technologies, the US’s proverbial head remains well and truly buried in the sand. This article serves as a primer and an enticement for the use of QALYs. The ‘concerns’ cited relate almost exclusively to decision rules applied to QALYs, rather than the underlying principles of QALYs, presumably because the authors didn’t feel they could ignore the points made by QALY opponents (even if those arguments are vacuous). What it boils down to is this: trade-offs are necessary, and QALYs can be used to promote value in those trade-offs, so unless you offer some meaningful alternative then QALYs are here to stay. Thankfully, the Institute for Clinical and Economic Review (ICER) has recently added some clout to the undeniable good sense of QALYs, so the future is looking a little brighter. Suck it up, America!

The impact of hospital costing methods on cost-effectiveness analysis: a case study. PharmacoEconomics [PubMed] Published 22nd May 2018

Plugging different cost estimates into your cost-effectiveness model could alter the headline results of your evaluation. That might seems obvious, but there are a variety of ways in which the selection of unit costs might be somewhat arbitrary or taken for granted. This study considers three alternative sources of information for hospital-based unit costs for hip fractures in England: (a) spell-level tariffs, (b) finished consultant episode (FCE) reference costs, and (c) spell-level reference costs. Source (b) provides, in theory, a more granular version of (a), describing individual episodes within a person’s hospital stay. Reference costs are estimated on the basis of hospital activity, while tariffs are prices estimated on the basis of historic reference costs. The authors use a previously reported cohort state transition model to evaluate different models of care for hip fracture and explore how the use of the different cost figures affects their results. FCE-level reference costs produced the highest total first-year hospital care costs (£14,440), and spell-level tariffs the lowest (£10,749). The more FCEs within a spell, the greater the discrepancy. This difference in costs affected ICERs, such that the net-benefit-optimising decision would change. The study makes an important point – that selection of unit costs matters. But it isn’t clear why the difference exists. It could just be due to a lack of precision in reference costs in this context (rather than a lack of accuracy, per se), or it could be that reference costs misestimate the true cost of care across the board. Without clear guidance on how to select the most appropriate source of unit costs, these different costing methodologies represent another source of uncertainty in modelling, which analysts should consider and explore.

Credits

James Lomas’s journal round-up for 21st May 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Decision making for healthcare resource allocation: joint v. separate decisions on interacting interventions. Medical Decision Making [PubMed] Published 23rd April 2018

While it may be uncontroversial that including all of the relevant comparators in an economic evaluation is crucial, a careful examination of this statement raises some interesting questions. Which comparators are relevant? For those that are relevant, how crucial is it that they are not excluded? The answer to the first of these questions may seem obvious, that all feasible mutually exclusive interventions should be compared, but this is in fact deceptive. Dakin and Gray highlight inconsistency between guidelines as to what constitutes interventions that are ‘mutually exclusive’ and so try to re-frame the distinction according to whether interventions are ‘incompatible’ – when it is physically impossible to implement both interventions simultaneously – and, if not, whether interventions are ‘interacting’ – where the costs and effects of the simultaneous implementation of A and B do not equal the sum of these parts. What I really like about this paper is that it has a very pragmatic focus. Inspired by policy arrangements, for example single technology appraisals, and the difficulty in capturing all interactions, Dakin and Gray provide a reader-friendly flow diagram to illustrate cases where excluding interacting interventions from a joint evaluation is likely to have a big impact, and furthermore propose a sequencing approach that avoids the major problems in evaluating separately what should be considered jointly. Essentially when we have interacting interventions at different points of the disease pathway, evaluating separately may not be problematic if we start at the end of the pathway and move backwards, similar to the method of backward induction used in sequence problems in game theory. There are additional related questions that I’d like to see these authors turn to next, such as how to include interaction effects between interventions and, in particular, how to evaluate system-wide policies that may interact with a very large number of interventions. This paper makes a great contribution to answering all of these questions by establishing a framework that clearly distinguishes concepts that had previously been subject to muddied thinking.

When cost-effective interventions are unaffordable: integrating cost-effectiveness and budget impact in priority setting for global health programs. PLoS Medicine [PubMed] Published 2nd October 2017

In my opinion, there are many things that health economists shouldn’t try to include when they conduct cost-effectiveness analysis. Affordability is not one of these. This paper is great, because Bilinski et al shine a light on the worldwide phenomenon of interventions being found to be ‘cost-effective’ but not affordable. A particular quote – that it would be financially impossible to implement all interventions that are found to be ‘very cost-effective’ in many low- and middle-income countries – is quite shocking. Bilinski et al compare and contrast cost-effectiveness analysis and budget impact analysis, and argue that there are four key reasons why something could be ‘cost-effective’ but not affordable: 1) judging cost-effectiveness with reference to an inappropriate cost-effectiveness ‘threshold’, 2) adoption of a societal perspective that includes costs not falling upon the payer’s budget, 3) failing to make explicit consideration of the distribution of costs over time and 4) the use of an inappropriate discount rate that may not accurately reflect the borrowing and investment opportunities facing the payer. They then argue that, because of this, cost-effectiveness analysis should be presented along with budget impact analysis so that the decision-maker can base a decision on both analyses. I don’t disagree with this as a pragmatic interim solution, but – by highlighting these four reasons for divergence of results with such important economic consequences – I think that there will be further reaching implications of this paper. To my mind, Bilinski et al essentially serves as a call to arms for researchers to try to come up with frameworks and estimates so that the conduct of cost-effectiveness analysis can be improved in order that paradoxical results are no longer produced, decisions are more usefully informed by cost-effectiveness analysis, and the opportunity costs of large budget impacts are properly evaluated – especially in the context of low- and middle-income countries where the foregone health from poor decisions can be so significant.

Patient cost-sharing, socioeconomic status, and children’s health care utilization. Journal of Health Economics [PubMed] Published 16th April 2018

This paper evaluates a policy using a combination of regression discontinuity design and difference-in-difference methods. Not only does it do that, but it tackles an important policy question using a detailed population-wide dataset (a set of linked datasets, more accurately). As if that weren’t enough, one of the policy reforms was actually implemented as a result of a vote where two politicians ‘accidentally pressed the wrong button’, reducing concerns that the policy may have in some way not been exogenous. Needless to say I found the method employed in this paper to be a pretty convincing identification strategy. The policy question at hand is about whether demand for GP visits for children in the Swedish county of Scania (Skåne) is affected by cost-sharing. Cost-sharing for GP visits has occurred for different age groups over different periods of time, providing the basis for regression discontinuities around the age threshold and treated and control groups over time. Nilsson and Paul find results suggesting that when health care is free of charge doctor visits by children increase by 5-10%. In this context, doctor visits happened subject to telephone triage by a nurse and so in this sense it can be argued that all of these visits would be ‘needed’. Further, Nilsson and Paul find that the sensitivity to price is concentrated in low-income households, and is greater among sickly children. The authors contextualise their results very well and, in addition to that context, I can’t deny that it also particularly resonated with me to read this approaching the 70th birthday of the NHS – a system where cost-sharing has never been implemented for GP visits by children. This paper is clearly also highly relevant to that debate that has surfaced again and again in the UK.

Credits

 

Thesis Thursday: Matthew Quaife

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Matthew Quaife who has a PhD from the London School of Hygiene and Tropical Medicine. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
Using stated preferences to estimate the impact and cost-effectiveness of new HIV prevention products in South Africa
Supervisors
Fern Terris-Prestholt, Peter Vickerman
Repository link
http://researchonline.lshtm.ac.uk/4646708

Stated preferences for what?

Our main study looked at preferences for new HIV prevention products in South Africa – estimating the uptake and cost-effectiveness of multi-purpose prevention products, which protect against HIV, pregnancy and STIs. You’ll notice that condoms do this, so why even bother? Condom use needs both partners to agree (for the duration of a given activity) and, whilst female partners tend to prefer condom-protected sex, there is lots of evidence that male partners – who also have greater bargaining power in many contexts – do not.

Oral pre-exposure prophylaxis (PrEP), microbicide gels, and vaginal rings are new products which prevent HIV infection. More importantly, they are female-initiated and can generally be used without a male partner’s knowledge. But trials and demonstration projects among women at high risk of HIV in sub-Saharan Africa have shown low levels of uptake and adherence. We used a DCE to inform the development of attractive and usable profiles for these products, and also estimate how much additional demand – and therefore protection – would be gained from adding contraceptive or STI-protective attributes.

We also elicited the stated preferences of female sex workers for client risk, condom use, and payments for sex. Sex workers can earn more for risky unprotected sex, and we used a repeated DCE to predict risk compensation (i.e. how much condom use would change) if they were to use HIV prevention products.

What did you find most influenced people’s preferences in your research?

Unsurprisingly for products, HIV protection was most important to people, followed by STI and then pregnancy protection. But digging below these averages with a latent class analysis, we found some interesting variation within female respondents: over a third were not concerned with HIV protection at all, instead strongly caring about pregnancy and STI protection. Worryingly, these were more likely to be respondents from high-incidence adolescent and sex worker groups. The remainder of the sample overwhelmingly chose based on HIV protection.

In the second sex worker DCE, we found that using a new HIV prevention product made condoms become less important and price more important. We predict that the price premium for unprotected sex would reduce by two thirds, and the amount of condomless sex would double. This is an interesting labour market/economic finding, but – if true – also has real public health implications. Since economic changes mean sex workers move from multi-purpose condoms to single-purpose products which need high levels of adherence, we thought this would be interesting to model.

How did you use information about people’s preferences to inform estimates of cost-effectiveness?

In two ways. First, we used simple uptake predictions from DCEs to parameterise an HIV transmission model, allowing for condom substitution uptake to vary by condom users and non-users (it was double in the latter). We were also able to model the potential uptake of multipurpose products which don’t exist yet – e.g. a pill protecting from HIV and pregnancy. We predict that this combination, in particular, would double uptake among high-risk young women.

Second, we predicted risk compensation among sex workers who chose new products instead of condoms. We were also able to calculate the price elasticity of supply of unprotected sex, which we built into a dynamic transmission model as a determinant of behaviour.

Can discrete choice experiments accurately predict the kinds of behaviours that you were looking at?

To be honest, when I started the PhD I was really sceptical – and I still am to an extent. But two things make me think DCEs can be useful in predicting behaviours.

First is the data. We published a meta-analysis of how well DCEs predict real-world health choices at an individual level. We only found six studies with individual-level data, but these showed DCEs predict with an 88% sensitivity but just a 34% specificity. If a DCE says you’ll do something, you more than likely will – which is important for modelling heterogeneity in uptake. We desperately need more studies following up DCE participants making real-world choices.

Second is the lack of alternative inputs. Where products are new and potential users are inexperienced, modellers pick an uptake number/range and hope for the best. Where we don’t know efficacy, we may assume that uptake and efficacy are linearly related – but they may not be (e.g. if proportionately more people use a 95% effective product than a 45% effective one). Instead, we might assume uptake and efficacy are independent, but that might sound even less realistic. I think that DCEs can tell us something about these behaviours that are useful for the parameters and structures of models, even if they are not perfect predictors.

Your tread the waters of infectious disease modelling in your research – was the incorporation of economic factors a challenge?

It was pretty tricky, though not as challenging as building the simple dynamic transmission model as a first exposure to R. In general, behaviours are pretty crudely modelled in transmission models, largely due to assumptions like random mixing and other population-level dynamics. We made a simple mechanistic model of sex work based on the supply elasticities estimated in the DCE, and ran a few scenarios, each time estimating the impact of prevention products. We simulated the price of unprotected sex falling and quantity rising as above, but also overlaid a few behavioural rules (e.g. Camerer’s constant income hypothesis) to simulate behavioural responses to a fall in overall income. Finally, we thought about competition between product users and non-users, and how much the latter may be affected by the market behaviours of the former. Look out for the paper at Bristol HESG!

How would you like to see research build on your work to improve HIV prevention?

I did a public engagement event last year based on one statistic: if you are a 16-year old girl living in Durban, you have an 80% lifetime risk of acquiring HIV. I find it unbelievable that, in 2018, when millions have been spent on HIV prevention and we have a range of interventions that can prevent HIV, incidence among some groups is still so dramatically and persistently high.

I think research has a really important role in understanding how people want to protect themselves from HIV, STIs, and pregnancy. In addition to highlighting the populations where interventions will be most cost-effective, we show that variation in preferences drives impact. I hope we can keep banging the drum to make attractive and effective options available to those at high risk.