Shilpi Swami’s journal round-up for 9th December 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Performance of UK National Health Service compared with other high-income countries: observational study. BMJ [PubMed] Published 27th November 2019

Efficiencies and inefficiencies of the NHS in the UK have been debated in recent years. This new study reveals the performance of the NHS compared to other high-income countries, based on observational data, and has already caught a bunch of attention (almost 3,000 tweets and 6 news appearances, since publication)!

The authors presented a descriptive analysis of the UK (England, Scotland, Northern Ireland, and Wales) compared to nine other countries (US, Canada, Germany, Australia, Sweden, France, Denmark, the Netherlands, and Switzerland) based on aggregated recent data from a range of sources (such as OECD, World Bank, the Institute for Health Metrics Evaluation, and Eurostat). Good things first; access to care – a lower proportion of people felt unmet needs owing to costs. The waiting times were comparable across other countries, except for specialist care. The UK performed slightly better on the metric of patient safety. The main challenge, however, is that NHS healthcare spending is lower and has been growing more slowly. This means fewer doctors and nurses, and doctors spending less time with patients. The authors vividly suggest that

“Policy makers should consider how recent changes to nursing bursaries, the weakened pound, and uncertainty about the status of immigrant workers in the light of the Brexit referendum result have influenced these numbers and how to respond to these challenges in the future.”

Understandably comparing healthcare systems across the world is difficult. Including the US in the study, and not including other countries like Spain and Japan, may need more justification or could be a scope of future research.

To be fair, the article is a not-to-miss read. It is an eye-opener for those who think it’s only a (too much) demand-side problem the the NHS is facing and confirms the perspective of those who think it’s a (not enough) supply-side problem. Kudos to the hardworking doctors and nurses who are currently delivering efficiently in the stretched situation! For sustainability, the NHS needs to consider increasing its spending to increase labour supply and long-term care.

A systematic review of methods to predict weight trajectories in health economic models of behavioral weight management programs: the potential role of psychosocial factors. Medical Decision Making [PubMed] Published 2nd December 2019

In economic modelling, assumptions are often made about the long-term impact of interventions, and it’s important that these assumptions are based on sound evidence and/or tested in sensitivity analysis, as these could affect the cost-effectiveness results.

The authors explored assumptions about weight trajectories to inform economic modelling of behavioural weight management programmes. Also, they checked their evidence sources, and whether these assumptions were based on any psychosocial variables (such as self-regulation, motivation, self-efficacy, and habit), as these are known to be associated with weight-loss trajectories.

The authors conducted a systematic literature review of economic models of weight management interventions that aimed at reducing weight. In the 38 studies included, they found 6 types of assumptions of weight trajectories beyond trial duration (weight loss maintained, weight loss regained immediately, linear weight regain, subgroup-specific trajectories, exponential decay of effect, maintenance followed by regain), with only 15 of the studies reporting sources for these assumptions. The authors also elaborated on the assumptions and graphically represented them. Psychosocial variables were, in fact, measured in evidence sources of some of the included studies. However, the authors found that none of the studies estimated their weight trajectory assumptions based on these! Though the article also reports on how the assumptions were tested in sensitivity analyses and their impact on results in the studies (if reported within these studies), it would have been interesting to see more insights into this. The authors feel that there’s a need to investigate how psychosocial variables measured in trials can be used within health economic models to calculate weight trajectories and, thus, to improve the validity of cost-effectiveness estimates.

To me, given that only around half of included studies reported sources of assumptions on long-term effects of the interventions and performed sensitivity analysis on these assumptions, it raises the bigger long-debated question on the quality of economic evaluations! To conclude, the review is comprehensive and insightful. It is an interesting read and will be especially useful for those interested in modelling long-term impacts of behavioural support programs.

The societal monetary value of a QALY associated with EQ‐5D‐3L health gains. The European Journal of Health Economics [PubMed] Published 28th November 2019

Finding an estimate of the societal monetary value of a QALY (MVQALY) is mostly performed to inform a range of thresholds for accurately guiding cost-effectiveness decisions.

This study explores the degree of variation in the societal MVQALY based on a large sample of the population in Spain. It uses a discrete choice experiment and a time trade-off exercise to derive a value set for utilities, followed by a willingness to pay questionnaire. The study reveals that the societal values for a QALY, corresponding to different EQ-5D-3L health gains, vary approximately between €10,000 and €30,000. Ironically, the MVQALY associated with larger improvements on QoL was found to be lower than with moderate QoL gains, meaning that WTP is less than proportional to the size of the QoL improvement. The authors further explored whether budgetary restrictions could be a reason for this by analysing responses of individuals with higher income and found out that it may somewhat explain this, but not fully. As this, at face value, implies there should be a lower cost per QALY threshold for interventions with largest improvement of health than with moderate improvements, it raises a lot of questions and forces you to interpret the findings with caution. The authors suggest that the diminishing MVQALY is, at least partly, produced by the lack of sensitivity of WTP responses.

Though I think that the article does not provide a clear take-home message, it makes the readers re-think the very underlying norms of estimating monetary values of QALYs. The study eventually raises more questions than providing answers but could be useful to further explore areas of utility research.

Credits

Don Husereau’s journal round-up for 25th November 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Development and validation of the TRansparent Uncertainty ASsessmenT (TRUST) tool for assessing uncertainties in health economic decision models. PharmacoEconomics [PubMed] Published 11th November 2019

You’re going to quickly see that all three papers in today’s round-up align with some strong personal pet peeves that I harbour toward the nebulous world of market access and health technology assessment – most prominent is how loose we seem to be with language and form without overarching standards. This may be of no surprise to some when discussing a field which lacks a standard definition and for which many international standards of what constitutes good practice have never been defined.

This first paper deals with both issues and provides a useful tool for characterizing uncertainty. The authors state the purpose of the tool is “for systematically identifying, assessing, and reporting uncertainty in health economic models.” They suggest, to the best of their knowledge, no such tool exists. They also support the need for the tool by asserting that uncertainty in health economic modelling is often not fully characterized. The reasons, they suggest, are twofold: (1) there has been too much emphasis on imprecision; and (2) it is difficult to express all uncertainty.

I couldn’t agree more. What I sometimes deeply believe about those planning and conducting economic evaluation is that they obsess too often about uncertainty that is is less relevant (but more amenable to statistical adjustment) and don’t address uncertainty that payers actually care about. To wit, while it may be important to explore and adopt methods that deal with imprecision (dealing with known unknowns), such as improving utility variance estimates (from an SE of 0.003 to 0.011, yes sorry Kelvin and Feng for the callout), not getting this right is unlikely to lead to truly bad decisions. (Kelvin and Feng both know this.)

What is much more important for decision makers is uncertainty that stems from a lack of knowledge. These are unknown unknowns. In my experience this typically has to do with generalizability (how well will it work in different patients or against a different comparator?) and durability (how do I translate 16 weeks of data into a lifetime?); not things resolved by better variance estimates and probabilistic analysis. In Canada, our HTA body has even gone so far as to respond to the egregious act of not providing different parametric forms for extrapolation with the equally egregious act of using unrealistic time horizon adjustments to deal with this. Two wrongs don’t make a right.

To develop the tool, the authors first conducted a (presumably narrative) review of uncertainty frameworks and then ran identified concepts across a bunch of HTA expert committee types. They also used a previously developed framework as a basis for identifying all the places where uncertainty in HTA could occur. Using the concepts and the HTA areas they developed a tool which was presented a few times, and then validated through semi-structured interviews with different international stakeholders (N = 11), as well as insights into barriers to its use, user-friendliness, and feasibility.

Once the tool was developed, six case studies were worked up with an illustration of one of them (pembrolizumab for Hodgkin’s lymphoma) in the manuscript. While the tool does not provide a score or coefficient to adjust estimates or deal with uncertainty, it is not supposed to. What it is trying to do is make sure you are aware of them all so that you can make some determination as to whether the uncertainties are dealt with. One of the challenges of developing the tool is the lack of standardized terminology regarding uncertainty itself. While a short primer exists in the manuscript, for those who have looked into it, uncertainty terminology is far more uncertain than even the authors let on.

While I appreciate the tool and the attempt to standardize things, I do suspect the approach could have been strengthened (a systematic review and possibly a nominal group technique as is done for reporting guidelines). However, I’m not sure this would have gotten us much closer to the truth. Uncertainty needs to be sorted first and I am happy at their attempt. I hope it raises some awareness of how we can’t simply say we are “uncertain” as if that means something.

Unmet medical need: an introduction to definitions and stakeholder perceptions. Value in Health [PubMed] Published November 2019

The second, and also often-abused, term without an obvious definition is unmet medical need (UMN). My theory is that some confusion has arisen due to a confluence of marketing and clinical development teams and regulators. UMN has come to mean patients with rare diseases, drugs with ‘novel’ mechanisms of action, patients with highly prevalent disease, drugs with a more convenient formulation, or drugs with fewer side effects. And yet payers (in my experience) usually recognize none of these. Payers tend to characterize UMN in different ways: no drugs available to treat the condition, available drugs do not provide consistent or durable responses, and there have been no new medical developments in the area for > 10 years.

The purpose of this research then was to unpack the term UMN further. The authors conducted a comprehensive (gray) literature review to identify definitions of UMN in use by different stakeholders and then unpacked their meaning through definitions consultations with multi-European stakeholder discussions, trying to focus on the key elements of unmet medical need with a regulatory and reimbursement lens. This consisted of six one-hour teleconference calls and two workshops held in 2018. One open workshop involved 69 people from regulatory agencies, industry, payers, HTA bodies, patient organizations, healthcare, and academia.

A key finding of this work was that, yes indeed, UMN means different things to different people. A key dimension is whether unmet need is being defined in terms of individuals or populations. Population size (whether prevalent or rare) was not felt to be an element of the definition while there was general consensus that disease severity was. This means UMN should really only consider the UMNs of individual patients, not whether very few or very many patients are at need. It also means we see people who have higher rates of premature mortality and severe morbidity as having more of an unmet need, regardless of how many people are affected by the condition.

And last but not least was the final dimension of how many treatments are actually available. This, the authors point out, is the current legal definition in Europe (as laid down in Article 4, paragraph 2 of Commission Regulation [EC] No. 507/2006). And while this seems the most obvious definition of ‘need’ (we usually need things that are lacking) there was some acknowledgement by stakeholders that simply counting existing therapies is not adequate. There was also acknowledgement that there may be existing therapies available and still an UMN. Certainly this reflects my experience on the pan-Canadian Oncology Drug Review expert review committee, where unmet medical need was an explicit subdomain in their value framework, and where on more than one occasion it was felt, to my surprise, there was an unmet need despite the availability of two or more treatments.

Like the previous paper, the authors did not conduct a systematic review and could have consulted more broadly (no clinician stakeholders were consulted) or used more objective methods, a limitation they acknowledge but also unlikely to get them much further ahead in understanding. So what to do with this information? Well, the authors do propose an HTA approach that would triage reimbursement decision based on UMN. However, stakeholders commented that the method you use really depends on the HTA context. As such, the authors conclude that “the application of the definition within a broader framework depends on the scope of the stakeholder.” In other words, HTA must be fit for purpose (something we knew already). However, like uncertainty, I’m happy someone is actually trying to create reasonable coherent definitions of such an important concept.

On value frameworks and opportunity costs in health technology assessment. International Journal of Technology Assessment in Health Care [PubMed] Published 18th September 2019

The final, and most-abused term is that of ‘value’. While value seems an obvious prerequisite to those making investments in healthcare, and that we (some of us) are willing to acknowledge that value is what we are willing to give up to get something, what is less clear is what we want to get and what we want to give up.

The author of this paper, then, hopes to remind us of the various schools of thought on defining value in health that speak to these trade-offs. The first is broadly consistent with the welfarist school of economics and proposes that the value of health care used by decision makers should reflect individuals’ willingness to pay for it. An alternative approach – sometimes referred to as the extra-welfarist framework, argues that the value of a health technology should be consistent with the policy objectives of the health care system, typically health (the author states it is ‘health’ but I’m not sure it has to be). The final school of thought (which I was not familiar with and neither might you be which is the point of the paper) is what he terms ‘classical’, where the point is not to maximize a maximand or be held up to notions of efficiency but rather to discuss how consumers will be affected. The reference cited to support this framework is this interesting piece although I couldn’t find any allusion to the framework within.

What follows is a relatively fair treatment of extra-welfarist and welfarist applications to decision-making with a larger critical swipe at the former (using legitimate arguments that have been previously published – yes, extra-welfarists assume resources are divisible and, yes, extra-welfarists don’t identify the health-producing resources that will actually be displaced and, yes, using thresholds doesn’t always maximize health) and much downplay of the latter (how we might measure trade-offs reliably under a welfarist framework appears to be a mere detail until this concession is finally mentioned: “On account of the measurement issues surrounding [willingness to pay], there may be many situations in which no valid and reliable methods of operationalizing [welfarist economic value frameworks] exist.”) Given the premise of this commentary is that a recent commentary by Culyer seemed to overlook concepts of value beyond extra-welfarist ones, the swipe at extra-welfarist views is understandable. Hence, this paper can be seen as a kind of rebuttal and reminder that other views should not be ignored.

I like the central premise of the paper as summarized here:

“Although the concise term “value for money” may be much easier to sell to HTA decision makers than, for example, “estimated mean valuation of estimated change in mean health status divided by the estimated change in mean health-care costs,” the former loses too much in precision; it seems much less honest. Because loose language could result in dire consequences of economic evaluation being oversold to the HTA community, it should be avoided at all costs”

However, while I am really sympathetic to warning against conceptual shortcuts and loose language, I wonder if this paper misses the bigger point. Firstly, I’m not convinced we are making such bad decisions as those who wish the lambda to be silenced tend to want us to believe. But more importantly, while it is easy to be critical about economics applied loosely or misapplied, this paper (like others) offers no real practical solutions other than the need to acknowledge other frameworks. It is silent on the real reason extra-welfarist approaches and thresholds seem to have stuck around, namely, they have provided a practical and meaningful way forward for difficult decision-making and the HTA processes that support them. They make sense to decision-makers who are willing to overlook some of the conceptual wrinkles. And I’m a firm believer that conceptual models are a starting point for pragmatism. We shouldn’t be slaves to them.

Credits

Chris Sampson’s journal round-up for 14th October 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Transparency in health economic modeling: options, issues and potential solutions. PharmacoEconomics [PubMed] Published 8th October 2019

Reading this paper was a strange experience. The purpose of the paper, and its content, is much the same as a paper of my own, which was published in the same journal a few months ago.

The authors outline what they see as the options for transparency in the context of decision modelling, with a focus on open source models and a focus on for whom the details are transparent. Models might be transparent to a small number of researchers (e.g. in peer review), to HTA agencies, or to the public at large. The paper includes a figure showing the two aspects of transparency, termed ‘reach’ and ‘level’, which relate to the number of people who can access the information and the level of detail made available. We provided a similar figure in our paper, using the terms ‘breadth’ and ‘depth’, which is at least some validation of our idea. The authors then go on to discuss five ‘issues’ with transparency: copyright, model misuse, confidential data, software, and time/resources. These issues are framed as questions, to which the authors posit some answers as solutions.

Perhaps inevitably, I think our paper does a better job, and so I’m probably over-critical of this article. Ours is more comprehensive, if nothing else. But I also think the authors make a few missteps. There’s a focus on models created by academic researchers, which oversimplifies the discussion somewhat. Open source modelling is framed as a more complete solution than it really is. The ‘issues’ that are discussed are at points framed as drawbacks or negative features of transparency, which they aren’t. Certainly, they’re challenges, but they aren’t reasons not to pursue transparency. ‘Copyright’ seems to be used as a synonym for intellectual property, and transparency is considered to be a threat to this. The authors’ proposed solution here is to use licensing fees. I think that’s a bad idea. Levying a fee creates an incentive to disregard copyright, not respect it.

It’s a little ironic that both this paper and my own were published, when both describe the benefits of transparency in terms of reducing “duplication of efforts”. No doubt, I read this paper with a far more critical eye than I normally would. Had I not published a paper on precisely the same subject, I might’ve thought this paper was brilliant.

If we recognize heterogeneity of treatment effect can we lessen waste? Journal of Comparative Effectiveness Research [PubMed] Published 1st October 2019

This commentary starts from the premise that a pervasive overuse of resources creates a lot of waste in health care, which I guess might be true in the US. Apparently, this is because clinicians have an insufficient understanding of heterogeneity in treatment effects and therefore assume average treatment effects for their patients. The authors suggest that this situation is reinforced by clinical trial publications tending to only report average treatment effects. I’m not sure whether the authors are arguing that clinicians are too knowledgable and dependent on the research, or that they don’t know the research well enough. Either way, it isn’t a very satisfying explanation of the overuse of health care. Certainly, patients could benefit from more personalised care, and I would support the authors’ argument in favour of stratified studies and the reporting of subgroup treatment effects. The most insightful part of this paper is the argument that these stratifications should be on the basis of observable characteristics. It isn’t much use to your general practitioner if personalisation requires genome sequencing. In short, I agree with the authors’ argument that we should do more to recognise heterogeneity of treatment effects, but I’m not sure it has much to do with waste.

No evidence for a protective effect of education on mental health. Social Science & Medicine Published 3rd October 2019

When it comes to the determinants of health and well-being, I often think back to my MSc dissertation research. As part of that, I learned that a) stuff that you might imagine to be important often isn’t and b) methodological choices matter a lot. Though it wasn’t the purpose of my study, it seemed from this research that higher education has a negative effect on people’s subjective well-being. But there isn’t much research out there to help us understand the association between education and mental health in general.

This study add to a small body of literature on the impact of changes in compulsory schooling on mental health. In (West) Germany, education policy was determined at the state level, so when compulsory schooling was extended from eight to nine years, different states implemented the change at different times between 1949 and 1969. This study includes 5,321 people, with 20,290 person-year observations, from the German Socio-Economic Panel survey (SOEP). Inclusion was based on people being born seven years either side of the cutoff birth year for which the longer compulsory schooling was enacted, with a further restriction to people aged between 50 and 85. The SOEP includes the SF-12 questionnaire, which includes a mental health component score (MCS). There is also an 11-point life satisfaction scale. The authors use an instrumental variable approach, using the policy change as an instrument for years of schooling and estimating a standard two-stage least squares model. The MCS score, life satisfaction score, and a binary indicator for MCS score lower than or equal to 45.6, are all modelled as separate outcomes.

Estimates using an OLS model show a positive and highly significant effect of years of schooling on all three outcomes. But when the instrumental variable model is used, this effect disappears. An additional year of schooling in this model is associated with a statistically and clinically insignificant decrease in the MCS score. Also insignificant was the finding that more years of schooling increases the likelihood of developing symptoms of a mental health disorder (as indicated by the MCS threshold of 45.6) and that life satisfaction is slightly lower. The same model shows a positive effect on physical health, which corresponds with previous research and provides some reassurance that the model could detect an effect if one existed.

The specification of the model seems reasonable and a host of robustness checks are reported. The only potential issue I could spot is that a person’s state of residence at the time of schooling is not observed, and so their location at entry into the sample is used. Given that education is associated with mobility, this could be a problem, and I would have liked to see the authors subject it to more testing. The overall finding – that an additional year of school for people who might otherwise only stay at school for eight years does not improve mental health – is persuasive. But the extent to which we can say anything more general about the impact of education on well-being is limited. What if it had been three years of additional schooling, rather than one? There is still much work to be done in this area.

Scientific sinkhole: the pernicious price of formatting. PLoS One [PubMed] Published 26th September 2019

This study is based on a survey that asked 372 researchers from 41 countries about the time they spent formatting manuscripts for journal submission. Let’s see how I can frame this as health economics… Well, some of the participants are health researchers. The time they spend on formatting journal submissions is time not spent on health research. The opportunity cost of time spent formatting could be measured in terms of health.

The authors focused on the time and wage costs of formatting. The results showed that formatting took a median time of 52 hours per person per year, at a cost of $477 per manuscript or $1,908 per person per year. Researchers spend – on average – 14 hours on formatting a manuscript. That’s outrageous. I have never spent that long on formatting. If you do, you only have yourself to blame. Or maybe it’s just because of what I consider to constitute formatting. The survey asked respondents to consider formatting of figures, tables, and supplementary files. Improving the format of a figure or a table can add real value to a paper. A good figure or table can change a bad paper to a good paper. I’d love to know how the time cost differed for people using LaTeX.

Credits