Sam Watson’s journal round-up for 3rd June 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Limits to human life span through extreme value theory. Journal of the American Statistical Association [RePEc] Published 2nd April 2019

The oldest verified person to have ever lived was Jeanne Calment who died in 1997 at the superlative age of 122. No-one else has ever been recorded as living longer than 120, but there have been perhaps a few hundred supercentarians over 110. Whenever someone reaches such a stupendous age, some budding reporter will ask them what the secret was. They will reply that they have stuck to a regimen of three boiled eggs and a glass of scotch every day for 80 years. And this information is of course completely meaningless due to survivorship bias. But as public health and health care improves and with it life expectancy, there remains the question of whether people will ever exceed these extreme ages or whether there is actually a limit to human longevity.

Some studies have attempted to address the question of maximum human longevity by looking at how key biological systems, like getting oxygen to the muscles or vasculature, degrade. They suggest that there would be an upper limit as key systems of the body just cannot last, which is not to say medicine might not find a way to fix or replace them in the future. Another way of addressing this question is to take a purely statistical approach and look at the distribution of the ages of the oldest people alive and try to make inferences about its upper limit. Such an analysis relies on extreme value theory.

There are two types of extreme value data. The first type consists of just the series of maximum values from the distribution. The Fisher-Tippett-Gnedenko theorem shows that these maxima can only be distributed according to one of three distributions. The second type of data are all of the most extreme observations above a certain threshold, and wonderfully there is another triple-barrelled theorem that shows that these data are distributed as a generalised Pareto distribution – the Pickand-Balkema-de Haan theorem. This article makes use of this latter type of data and theorem to estimate: (i) is there an upper limit to the distribution of human life spans? (ii) What is it, if so? And (iii) does it change over time?

The authors use a dataset of the ages of death in days of all Dutch residents who died over the age of 92 between 1986 and 2015. Using these data to estimate the parameters of the generalised Pareto distribution, they find strong evidence to suggest that, statistically at least, it has an upper limit and that this limit is probably around 117-124. Over the years of the study there did not appear to be any change in this limit. This is not to say that it couldn’t change in the future if some new miraculous treatment appeared, but for now, we humans must put up with a short and finite existence.

Infant health care and long-term outcomes. Review of Economics and Statistics [RePEc] Published 13th May 2019

I haven’t covered an article on infant health and economic conditions and longer term outcomes for a while. It used to be that there would be one in every round-up I wrote. I could barely keep up with the literature, which I tried to summarise in a different blog post. Given that it has been a while, I thought I would include a new one. This time we are looking at the effect of mother and child health centres in Norway in the 1930s on the outcomes of adults later in the 20th Century.

Fortunately the health centres were built in different municipalities at different times. The authors note that the “key identifying assumption” is that they were not built at a time related to the health of infants in those areas (well, this and that the model is linear and additive, time trends are linear, etc. etc. something that economists often forget). They don’t go into too much detail on this, but it seems plausible. Another gripe of mine with most empirical economic papers, and indeed in medical and public health fields, is that plotting the data is a secondary concern or doesn’t happen at all. It should be the most important thing. Indeed, in this article much of the discussion can be captured by the figure buried two thirds through. The figure shows that the centres likely led to a big reduction in diarrhoeal disease, probably due to increased rates of breast feeding, but on other outcomes effects are more ambiguous and probably quite small if they exist. Some evidence is provided to suggest that these differences were associated with very modest increases in educational attainment and adult wages. However, a cost-benefit calculation suggests that on the basis of these wage increases the intervention had a annualised rate of return of about 5%.

I should say that this study is well-conducted and fairly solid so any gripes with it are fairly minor. It certainly fits neatly into the wide literature on the topic, and I don’t think anyone would doubt that investing in childhood interventions is likely to have a number of short and long term benefits.

Relationship between poor olfaction and mortality among community-dwelling older adults: a cohort study. Annals of Internal Medicine [PubMed] Published 21st May 2019

I included this last study, not because of any ground-breaking economics or statistics, but because it is interesting. This is one of a number of studies to have looked at the relationship between smell ability and risk of death. These studies have generally found a strong direct relationship between poor olfaction and risk of death in the following years (summarised briefly in this editorial). This study examines a cohort of a couple of thousand older people whose smell was rigourously tested at baseline, among other things. If they died then their death was categorised by a medical examiner into one of four categories: dementia or Parkinson disease, cardiovascular disease, cancer, and respiratory illness.

There was a very strong relationship between poor ability to smell and all-cause death. They found that cumulative risk for death was 46% and 30% higher in persons with a loss of smelling ability at 10 and 13 years respectively. Delving into death by cause, they found that this relationship was most important among those who died of dementia or Parkinson disease, which makes sense as smell is one of the oldest limbic structures and linked to many parts of the brain. Some relationship was seen with cardiovascular disease but not cancer or respiratory illness. They then use a ‘mediation analysis’, i.e. conditioning on post-treatment variables to ‘block’ causal pathways, to identify how much variation is explained and conclude that dementia, Parkinson disease, and weight loss account for about 30% of the observed relationship. However, I am usually suspicious of mediation analyses, and standard arguments would suggest that model parameters would be biased.

Interestingly, olfaction is not normally used as a diagnostic test among the elderly despite sense of smell being one of the strongest predictors of mortality. People do not generally notice their sense of smell waning as it is gradual, so would not likely remark on it to a doctor. Perhaps it is time to start testing it routinely?

Credits

Chris Sampson’s journal round-up for 8th January 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

An empirical comparison of the measurement properties of the EQ-5D-5L, DEMQOL-U and DEMQOL-Proxy-U for older people in residential care. Quality of Life Research [PubMed] Published 5th January 2018

There is now a condition-specific preference-based measure of health-related quality of life that can be used for people with cognitive impairment: the DEMQOL-U. Beyond the challenge of appropriately defining quality of life in this context, cognitive impairment presents the additional difficulty that individuals may not be able to self-complete a questionnaire. There’s some good evidence that proxy responses can be valid and reliable for people with cognitive impairment. The purpose of this study is to try out the new(ish) EQ-5D-5L in the context of cognitive impairment in a residential setting. Data were taken from an observational study in 17 residential care facilities in Australia. A variety of outcome measures were collected including the EQ-5D-5L (proxy where necessary), a cognitive bolt-on item for the EQ-5D, the DEMQOL-U and the DEMQOL-Proxy-U (from a family member or friend), the Modified Barthel Index, the cognitive impairment Psychogeriatric Assessment Scale (PAS-Cog), and the neuropsychiatric inventory questionnaire (NPI-Q). The researchers tested the correlation, convergent validity, and known-group validity for the various measures. 143 participants self-completed the EQ-5D-5L and DEMQOL-U, while 387 responses were available for the proxy versions. People with a diagnosis of dementia reported higher utility values on the EQ-5D-5L and DEMQOL-U than people without a diagnosis. Correlations between the measures were weak to moderate. Some people reported full health on the EQ-5D-5L despite identifying some impairment on the DEMQOL-U, and some vice versa. The EQ-5D-5L was more strongly correlated with clinical outcome measures than were the DEMQOL-U or DEMQOL-Proxy-U, though the associations were generally weak. The relationship between cognitive impairment and self-completed EQ-5D-5L and DEMQOL-U utilities was not in the expected direction; people with greater cognitive impairment reported higher utility values. There was quite a lot of disagreement between utility values derived from the different measures, so the EQ-5D-5L and DEMQOL-U should not be seen as substitutes. An EQ-QALY is not a DEM-QALY. This is all quite perplexing when it comes to measuring health-related quality of life in people with cognitive impairment. What does it mean if a condition-specific measure does not correlate with the condition? It could be that for people with cognitive impairment the key determinant of their quality of life is only indirectly related to their impairment, and more dependent on their living conditions.

Resolving the “cost-effective but unaffordable” paradox: estimating the health opportunity costs of nonmarginal budget impacts. Value in Health Published 4th January 2018

Back in 2015 (as discussed on this blog), NICE started appraising drugs that were cost-effective but implied such high costs for the NHS that they seemed unaffordable. This forced a consideration of how budget impact should be handled in technology appraisal. But the matter is far from settled and different countries have adopted different approaches. The challenge is to accurately estimate the opportunity cost of an investment, which will depend on the budget impact. A fixed cost-effectiveness threshold isn’t much use. This study builds on York’s earlier work that estimated cost-effectiveness thresholds based on health opportunity costs in the NHS. The researchers attempt to identify cost-effectiveness thresholds that are in accordance with different non-marginal (i.e. large) budget impacts. The idea is that a larger budget impact should imply a lower (i.e. more difficult to satisfy) cost-effectiveness threshold. NHS expenditure data were combined with mortality rates for different disease categories by geographical area. When primary care trusts’ (PCTs) budget allocations change, they transition gradually. This means that – for a period of time – some trusts receive a larger budget than they are expected to need while others receive a smaller budget. The researchers identify these as over-target and under-target accordingly. The expenditure and outcome elasticities associated with changes in the budget are estimated for the different disease groups (defined by programme budgeting categories; PBCs). Expenditure elasticity refers to the change in PBC expenditure given a change in overall NHS expenditure. Outcome elasticity refers to the change in PBC mortality given a change in PBC expenditure. Two econometric approaches are used; an interaction term approach, whereby a subgroup interaction term is used with the expenditure and outcome variables, and a subsample estimation approach, whereby subgroups are analysed separately. Despite the limitations associated with a reduced sample size, the subsample estimation approach is preferred on theoretical grounds. Using this method, under-target PCTs face a cost-per-QALY of £12,047 and over-target PCTs face a cost-per-QALY of £13,464, reflecting diminishing marginal returns. The estimates are used as the basis for identifying a health production function that can approximate the association between budget changes and health opportunity costs. Going back to the motivating example of hepatitis C drugs, a £772 million budget impact would ‘cost’ 61,997 QALYs, rather than the 59,667 that we would expect without accounting for the budget impact. This means that the threshold should be lower (at £12,452 instead of £12,936) for a budget impact of this size. The authors discuss a variety of approaches for ‘smoothing’ the budget impact of such investments. Whether or not you believe the absolute size of the quoted numbers depends on whether you believe the stack of (necessary) assumptions used to reach them. But regardless of that, the authors present an interesting and novel approach to establishing an empirical basis for estimating health opportunity costs when budget impacts are large.

First do no harm – the impact of financial incentives on dental x-rays. Journal of Health Economics [RePEc] Published 30th December 2017

If dentists move from fee-for-service to a salary, or if patients move from co-payment to full exemption, does it influence the frequency of x-rays? That’s the question that the researchers are trying to answer in this study. It’s important because x-rays always present some level of (carcinogenic) risk to patients and should therefore only be used when the benefits are expected to exceed the harms. Financial incentives shouldn’t come into it. If they do, then some dentists aren’t playing by the rules. And that seems to be the case. The authors start out by establishing a theoretical framework for the interaction between patient and dentist, which incorporates the harmful nature of x-rays, dentist remuneration, the patient’s payment arrangements, and the characteristics of each party. This model is used in conjunction with data from NHS Scotland, with 1.3 million treatment claims from 200,000 patients and 3,000 dentists. In 19% of treatments, an x-ray occurs. Some dentists are salaried and some are not, while some people pay charges for treatment and some are exempt. A series of fixed effects models are used to take advantage of these differences in arrangements by modelling the extent to which switches (between arrangements, for patients or dentists) influence the probability of receiving an x-ray. The authors’ preferred model shows that both the dentist’s remuneration arrangement and the patient’s financial status influences the number of x-rays in the direction predicted by the model. That is, fee-for-service and charge exemption results in more x-rays. The combination of these two factors results in a 9.4 percentage point increase in the probability of an x-ray during treatment, relative to salaried dentists with non-exempt patients. While the results do show that financial incentives influence this treatment decision (when they shouldn’t), the authors aren’t able to link the behaviour to patient harm. So we don’t know what percentage of treatments involving x-rays would correspond to the decision rule of benefits exceeding harms. Nevertheless, this is an important piece of work for informing the definition of dentist reimbursement and patient payment mechanisms.

Credits

Chris Sampson’s journal round-up for 3rd October 2016

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Using discrete choice experiments with duration to model EQ-5D-5L health state preferences: testing experimental design strategies. Medical Decision Making [PubMedPublished 28th September 2016

DCEs are a bit in vogue for the purpose of health state valuation, so it was natural that EuroQol turned to it for valuation of the EQ-5D-5L. But previous valuation studies have highlighted challenges  associated with this approach, some of which this paper now investigates. Central to the use of DCE in this way is the inclusion of a duration attribute to facilitate anchoring from 1 to dead. This study looks at the effect of increasing the options when it comes to duration, as previous studies were limited in this regard. In this study, possible durations were 6 months or 1, 2, 4, 7 or 10 years. 802 online survey respondents we presented with 10 DCE choice sets, and the resulting model had generally logically ordered coefficients. So the approach looks feasible, but it isn’t clear whether or not there are any real advantages to including more durations. Another issue is that the efficiency of the DCE design might be improved by introducing prior information from previous studies to inform the selection of health profiles – that is, by introducing non-zero prior values. With 800 respondents, this design resulted in more disordering with – for example – a positive coefficient on level 2 for the pain/discomfort dimension. This was not the expected result. However, the design included a far greater proportion of more difficult choices, which the authors suggest may have resulted in inconsistencies. An alternative way of increasing efficiency might be to use a 2-stage approach, whereby health profiles are selected and then durations are selected based on information from previous studies. Using the same number of pairs but a sample half the size (400), the 2-stage design seemed to work a treat. It’s a promising design that will no doubt see further research in this context.

Is the distribution of care quality provided under pay-for-performance equitable? Evidence from the Advancing Quality programme in England. International Journal for Equity in Health [PubMedPublished 23rd September 2016

Suppose a regional health care quality improvement initiative worked, but only for the well-off. Would we still support it? Maybe not, so it’s important to uncover for whom the policy is working. QOF is the most-studied pay-for-performance programme in England and it does not seem to have reduced health inequalities in the context of primary care. There is less evidence regarding P4P in hospital care, which is where this study comes in by looking at the Advancing Quality initiative across five different health conditions. Using individual-level data for 73,002 people, the authors model the probability of receiving a quality indicator according to income deprivation in their local area. There were 23 indicators altogether, across which the results were not consistent. Poorer patients were more likely to receive pre-surgical interventions for hip and knee replacements and for coronary artery bypass grafting (CABG). And poorer people were less likely to receive advice at discharge. On the other hand, for hip and knee replacement and CABG, richer people were more likely to receive diagnostic tests. The main finding is that there is no obvious systematic pro-poor or pro-rich bias in the effects of this pay-for-performance initiative in secondary care. This may not be a big surprise due to the limited amount of self-selection and self-direction for patients in secondary care, compared with primary care.

The impact of social security income on cognitive function at older ages. American Journal of Health Economics [RePEc] Published 19th September 2016

Income correlates with health, as we know. But it’s useful to be more specific – as this article is – in order to inform policy. So does more social security income improve cognitive function at older ages? The short answer is yes. And that wasn’t a foregone conclusion as there is some evidence that higher income leads to earlier retirement, which in turn can be detrimental to cognitive function. In this study the authors use changes in the Social Security Act in the US in the 1970s. Between 1972 and 1977, Congress messed up a bit and temporarily introduced a policy that made payments increase at a rate faster than inflation, which was therefore enjoyed by people born between 1910 and 1916, with a 5 year gradual transition until 1922. Unsurprisingly, this study follows many others that have made the most of this policy quirk. Data are taken from a longitudinal survey of older people, which includes a set of scores relating to cognition, with a sample of 4139 people. Using an OLS model, the authors estimate the association between Social Security income and cognition. Cognition is measured using a previously developed composite score with 3 levels: ‘normal’, ‘cognitively impaired’ and ‘demented’. To handle the endogeneity of income, an instrumental variable is constructed on the basis of year of birth to tie-in with the peak in benefit from the policy (n=673). In today’s money the beneficiary cohort received around $2000 extra. It’s also good to see the analysis extended to a quantile regression to see whereabouts in the cognition score distribution effects accrue. The additional income resulted in improvements in working memory, knowledge, languages and orientation and overall cognition. The effects are strong and clinically meaningful. A $1000 (in 1993 prices) increase in annual income lead to a 1.9 percentage point reduction in the likelihood of being classified as cognitively impaired. The effect is strongest for those with higher levels of cognition. The key take-home message here is that even in older populations, policy changes can be beneficial to health. It’s never too late.

Credits