Using Discrete Choice Experiments in Health Economics Course

This popular course, offered by the Health Economics Research Unit (HERU) at the University of Aberdeen, Scotland, covers the theoretical and practical issues of discrete choice experiments (DCEs) in health economics. The course takes place annually and in 2018 was fully booked.

The course provides:

  • An introduction to the theoretical basis for the development and application of DCEs in health economics.
  • Step by step guide to the design of DCEs, questionnaire development, data input, data analysis and interpretation of results.
  • An update on methodological issues raised in the application of DCEs in health economics.

Thesis Thursday: Logan Trenaman

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Logan Trenaman who has a PhD from the University of British Columbia. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
Economic evaluation of interventions to support shared decision-making: an extension of the valuation framework
Supervisors
Nick Bansback, Stirling Bryan
Repository link
http://hdl.handle.net/2429/66769

What is shared decision-making?

Shared decision-making is a process whereby patients and health care providers work together to make decisions. For most health care decisions, where there is no ‘best’ option, the most appropriate course of action depends on the clinical evidence and the patient’s informed preferences. In effect, shared decision-making is about reducing information asymmetry, by allowing providers to inform patients about the potential benefits and harms of alternative tests or treatments, and patients to express their preferences to their provider. The goal is to reach agreement on the most appropriate decision for that patient.

My thesis focused on individuals with advanced osteoarthritis who were considering whether to undergo total hip or knee replacement, or use non-surgical treatments such as pain medication, exercise, or mobility aids. Joint replacement alleviates pain and improves mobility for most patients, however, as many as 20-30% of recipients have reported insignificant improvement in symptoms and/or dissatisfaction with results. Shared decision-making can help ensure that those considering joint replacement are aware of alternative treatments and have realistic expectations about the potential benefits and harms of each option.

There are different types of interventions available to help support shared decision-making, some of which target the patient (e.g. patient decision aids) and some of which target providers (e.g. skills training). My thesis focused on a randomized controlled trial that evaluated a pre-consultation patient decision aid, which generated a summary report for the surgeon that outlined the patient’s knowledge, values, and preferences.

How can the use of decision aids influence health care costs?

The use of patient decision aids can impact health care costs in several ways. Some patient decision aids, such as those evaluated in my thesis, are designed for use by patients in preparation for a consultation where a treatment decision is made. Others are designed to be used during the consultation with the provider. There is some evidence that decision aids may increase up-front costs, by increasing the length of consultations, requiring investments to integrate decision aids into routine care, or train clinicians. These interventions may impact downstream costs by influencing treatment decision-making. For example, the Cochrane review of patient decision aids found that, across 18 studies in major elective surgery, those exposed to decision aids were less likely to choose surgery compared to those in usual care (RR: 0.86, 95% CI: 0.75 to 1.00).

This was observed in the trial-based economic evaluation which constituted the first chapter of my thesis. This analysis found that decision aids were highly cost-effective, largely due to a smaller proportion of patients undergoing joint replacement. Of course, this conclusion could change over time. One of the challenges of previous cost-effectiveness analysis (CEA) of patient decision aids has been a lack of long-term follow-up. Patients who choose not to have surgery over the short-term may go on to have surgery later. To look at the longer-term impact of decision aids, the third chapter of my thesis linked trial participants to administrative data with an average of 7-years follow-up. I found that, from a resource use perspective, the conclusion was the same as observed during the trial: fewer patients exposed to decision aids had undergone surgery, resulting in lower costs.

What is it about shared decision-making that patients value?

On the whole, the evidence suggests that patients value being informed, listened to, and offered the opportunity to participate in decision-making (should they wish!). To better understand how much shared decision-making is valued, I performed a systematic review of discrete choice experiments (DCEs) that had valued elements of shared decision-making. This review found that survey respondents (primarily patients) were willing to wait longer, pay, and in some cases willing to accept poorer health outcomes for greater shared decision-making.

It is important to consider preference heterogeneity in this context. The last chapter of my PhD performed a DCE to value shared decision-making in the context of advanced knee osteoarthritis. The DCE included three attributes: waiting time, health outcomes, and shared decision-making. The latent class analysis found four distinct subgroups of patients. Two groups were balanced, and traded between all attributes, while one group had a strong preference for shared decision-making, and another had a strong preference for better health outcomes. One important finding from this analysis was that having a strong preference for shared decision-making was not associated with demographic or clinical characteristics. This highlights the importance of each clinical encounter in determining the appropriate level of shared decision-making for each patient.

Is it meaningful to estimate the cost-per-QALY of shared decision-making interventions?

One of the challenges of my thesis was grappling with the potential conflict between the objectives of CEA using QALYs (maximizing health) and shared decision-making interventions (improved decision-making). Importantly, encouraging shared decision-making may result in patients choosing alternatives that do not maximize QALYs. For example, informed patients may choose to delay or forego elective surgery due to potential risks, despite it providing more QALYs (on average).

In cases where a CEA finds that shared decision-making interventions result in poorer health outcomes at lower cost, I think this is perfectly acceptable (provided patients are making informed choices). However, it becomes more complicated when shared decision-making interventions increase costs, result in poorer health outcomes, but provide other, non-health benefits such as informing patients or involving them in treatment decisions. In such cases, decision-makers need to consider whether it is justified to allocate scarce health care resources to encourage shared decision-making when it requires sacrificing health outcomes elsewhere. The latter part of my thesis tried to inform this trade-off, by valuing the non-health benefits of shared decision-making which would not otherwise be captured in a CEA that uses QALYs.

How should the valuation framework be extended, and is this likely to indicate different decisions?

I extended the valuation framework by attempting to value non-health benefits of shared decision-making. I followed guidelines from the Canadian Agency for Drugs and Technologies in Health, which state that “the value of non-health effects should be based on being traded off against health” and that societal preferences be used for this valuation. Requiring non-health benefits to be valued relative to health reflects the opportunity cost of allocating resources toward these outcomes. While these guidelines do not specifically state how to do so, I chose to value shared decision-making relative to life-years using a chained (or two-stage) valuation approach so that they could be incorporated within the QALY.

Ultimately, I found that the value of the process of shared decision-making was small, however, this may have an impact on cost-effectiveness. The reasons for this are twofold. First, there are few cases where shared decision-making interventions improve health outcomes. A 2018 sub-analysis of the Cochrane review of patient decision aids found little evidence that they impact health-related quality of life. Secondly, the up-front cost of implementing shared decision-making interventions may be small. Thus, in cases where shared decision-making interventions require a small investment but provide no health benefit, the non-health value of shared decision-making may impact cost-effectiveness. One recent example from Dr Victoria Brennan found that incorporating process utility associated with improved consultation quality, resulting from a new online assessment tool, increased the probability that the intervention was cost-effective from 35% to 60%.

Chris Sampson’s journal round-up for 7th January 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Overview, update, and lessons learned from the international EQ-5D-5L valuation work: version 2 of the EQ-5D-5L valuation protocol. Value in Health Published 2nd January 2019

Insofar as there is any drama in health economics, the fallout from the EQ-5D-5L value set for England was pretty dramatic. If you ask me, the criticisms are entirely ill-conceived. Regardless of that, one of the main sticking points was that the version of the EQ-5D-5L valuation protocol that was used was flawed. England was one of the first countries to get a valuation, so it used version 1.0 of the EuroQol Valuation Technique (EQ-VT). We’re now up to version 2.1. This article outlines the issues that arose in using the first version, what EuroQol did to try and solve them, and describes the current challenges in valuation.

EQ-VT 1.0 includes the composite time trade-off (cTTO) task to elicit values for health states better and worse than dead. Early valuation studies showed some unusual patterns. Research into the causes of this showed that in many cases there was very little time spent on the task. Some interviewers had a tendency to skip parts of the explanation for completing the worse-than-dead bit of the cTTO, resulting in no values worse than dead. EQ-VT 1.1 added three practise valuations along with greater monitoring of interviewer performance and a quality control procedure. This dramatically reduced interviewer effects and the likelihood of inconsistent responses. Yet further improvements could be envisioned. And so EQ-VT 2.0 added a feedback module. The feedback module shows respondents the ranking of states implied by their valuations, with which respondents can then agree or disagree. 2.0 was tested against 1.1 and showed further reductions in inconsistencies thanks to the feedback module. Other modifications were not supported by the evaluation. EQ-VT 2.1 added a dynamic question to further improve the warm-up tasks.

There are ongoing challenges with the cTTO, mostly to do with how to model the data. The authors provide a table setting out causes, consequences, and possible solutions for various issues that might arise in the modelling of cTTO data. And then there’s the discrete choice experiment (DCE), which is included in addition to the cTTO, but which different valuation studies used (or did not use) differently in modelling values. Research is ongoing that will probably lead to developments beyond EQ-VT 2.1. This might involve abandoning the cTTO altogether. Or, at least, there might be a reduction in cTTO tasks and a greater reliance on DCE. But more research is needed before duration can be adequately incorporated into DCEs.

Helpfully, the paper includes a table with a list of countries and specification of the EQ-VT versions used. This demonstrates the vast amount of knowledge that has been accrued about EQ-5D-5L valuation and the lack of wisdom in continuing to support the (relatively under-interrogated) EQ-5D-3L MVH valuation.

Do time trade-off values fully capture attitudes that are relevant to health-related choices? The European Journal of Health Economics [PubMed] Published 31st December 2018

Different people have different preferences, so values for health states elicited using TTO should vary from person to person. This study is concerned with how personal circumstances and beliefs influence TTO values and whether TTO entirely captures the impact of these on preferences for health states.

The authors analysed data from an online survey with a UK-representative sample of 1,339. Participants were asked about their attitudes towards quality and quantity of life, before completing some TTO tasks based on the EQ-5D-5L. Based on their response, they were shown two ‘lives’ that – given their TTO response – they should have considered to be of equivalent value. The researchers constructed generalised estimating equations to model the TTO values and logit models for the subsequent choices between states. Age, marital status, education, and attitudes towards trading quality and quantity of life all determined TTO values in addition to the state that was being valued. In the modelling of the decisions about the two lives, attitudes influenced decisions through the difference between the two lives in the number of life years available. That is, an interaction term between the attitudes variable and years variables showed that people who prefer quantity of life over quality of life were more likely to choose the state with a greater number of years.

The authors’ interpretation from this is that TTO reflects people’s attitudes towards quality and quantity of life, but only partially. My interpretation would be that the TTO exercise would have benefitted from the kind of refinement described above. The choice between the two lives is similar to the feedback module of the EQ-VT 2.0. People often do not understand the implications of their TTO valuations. The study could also be interpreted as supportive of ‘head-to-head’ choice methods (such as DCE) rather than making choices involving full health and death. But the design of the TTO task used in this study was quite dissimilar to others, which makes it difficult to say anything generally about TTO as a valuation method.

Exploring the item sets of the Recovering Quality of Life (ReQoL) measures using factor analysis. Quality of Life Research [PubMed] Published 21st December 2018

The ReQoL is a patient-reported outcome measure for use with people experiencing mental health difficulties. The ReQoL-10 and ReQoL-20 both ask questions relating to seven domains: six mental, one physical. There’s been a steady stream of ReQoL research published in recent years and the measures have been shown to have acceptable psychometric properties. This study concerns the factorial structure of the ReQoL item sets, testing internal construct validity and informing scoring procedures. There’s also a more general methodological contribution relating to the use of positive and negative factors in mental health outcome questionnaires.

At the outset of this study, the ReQoL was based on 61 items. These were reduced to 40 on the basis of qualitative and quantitative analysis reported in other papers. This paper reports on two studies – the first group (n=2,262) completed the 61 items and the second group (n=4,266) completed 40 items. Confirmatory factor analysis and exploratory factor analysis were conducted. Six-factor (according to ReQoL domains), two-factor (negative/positive) and bi-factor (global/negative/positive) models were tested. In the second study, participants were either presented with a version that jumbled up the positively and negatively worded questions or a version that showed a block of negatives followed by a block of positives. The idea here is that if a two-factor structure is simply a product of the presentation of questions, it should be more pronounced in the jumbled version.

The results were much the same from the two study samples. The bi-factor model demonstrated acceptable fit, with much higher factor loadings on the general quality of life factor that loaded on all items. The results indicated sufficient unidimensionality to go ahead with reducing the number of items and the two ordering formats didn’t differ, suggesting that the negative and positive loadings weren’t just an artefact of the presentation. The findings show that the six dimensions of the ReQoL don’t stand as separate factors. The justification for maintaining items from each of the six dimensions, therefore, seems to be a qualitative one.

Some outcome measurement developers have argued that items should all be phrased in the same direction – as either positive or negative – to obtain high-quality data. But there’s good reason to think that features of mental health can’t reliably be translated from negative to positive, and this study supports the inclusion (and intermingling) of both within a measure.

Credits