Meeting round-up: 7th Meeting of the International Academy of Health Preference Research

The 7th meeting of the International Academy of Health Preference Research (IAHPR) took place in Glasgow on Saturday 4th November 2017. The meeting was chaired by Karin Groothuis-Oudshoorn and Terry Flynn. It was preceded by a Friday afternoon symposium on the econometrics of heterogeneity, which I was unable to attend.

IAHPR is a relatively new organisation, describing itself as an ‘international network of multilingual, multidisciplinary researchers who contribute to the field of health preference research’. To minimise participants’ travel costs, IAHPR meetings are usually scheduled alongside major international conferences such as the meetings of iHEA, EuHEA and AHES (the Australian Health Economics Society). The November meeting took place just before the kick-off of the ISPOR European Congress (a behemoth by comparison). Most, but not all, of the attendees I spoke to, said that they would also be attending the ISPOR Congress.

The meeting was attended by 49 researchers from nine different countries. Nine were from the US, 16 from the UK, and 22 from elsewhere in the EU (sadly, I won’t be able to use the phrase ‘elsewhere in the EU’ for much longer). Understandably, the regional representation of the Glasgow meeting was quite different from that of the (July 2017) Boston meeting, where over 60% of the participants were based in the US.

All1

In total there were 12 podium presentations (half by student presenters) and about eight posters. Each podium presenter was allocated 12 minutes for their presentation and a further eight minutes for questions and group discussion. The poster authors were given the opportunity to briefly introduce themselves and their research to the group as part of an ‘elevator talks’ session.

Although all of the presentations focused on issues in stated preference research, the range of topics was quite broad, covering preferences between health outcomes, preferences between health services, conceptual and theoretical issues, experimental design approaches, and novel analytical techniques. Most of the studies presented applications of the DCE and best-worst scaling methods. Several presentations examined issues relating to preference heterogeneity and decision heuristics.

A personal highlight was Tabea Schmidt-Ott’s examination of the use of dominance tests to assess rational choice behaviour amongst survey respondents. She reported that such tests were included in a quarter of the health-related DCE studies published in 2015 (including many studies that had been led by IAHPR meeting attendees). Their inclusion had often been used to justify choices about which respondents to exclude from the final samples. Tabea concluded that dominance tests are a weak technique for assessing the rationality of people’s choice behaviour, as the observation of dominated choices can be explained by and accounted for in DCE models.

Overall, the IAHPR meeting was enjoyable and intellectually stimulating. The standard of the presentations and discussions was high, and it was a good forum for learning about the latest advances in stated preference research. It was quite DCE-dominated, so it would have been interesting to have had some representation from researchers who are sceptical about that methodology.

The next meeting will take place in Tasmania, to be chaired by Brendan Mulhern and Richard Norman.

Credits

Alastair Canaway’s journal round-up for 27th November 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Elevated mortality among weekend hospital admissions is not associated with adoption of seven day clinical standards. Emergency Medicine Journal [PubMedPublished 8th November 2017

Our esteemed colleagues in Manchester brought more evidence to the seven-day NHS debate (debacle?). Patients who are admitted to hospital in an emergency at weekends have higher mortality rates than those during the week. Despite what our Secretary of State will have you believe, there is an increasing body of evidence suggesting that once case-mix is adequately adjusted for, the ‘weekend effect’ becomes negligible. This paper takes a slightly different angle for examining the same phenomenon. It harnesses the introduction of four priority clinical standards in England, which aim to reduce the number of deaths associated with the weekend effect. These are time to first consultant review; access to diagnostics; access to consultant-directed interventions; and on-going consultant review. The study uses publicly available data on the performance of NHS Trusts in relation to these four priority clinical standards. For the latest financial year (2015/16), Trusts’ weekend effect odds ratios were compared to their achievement against the four clinical standards. Data were available for 123 Trusts. The authors found that adoption of the four clinical standards was not associated with the extent to which mortality was elevated for patients admitted at the weekend. Furthermore, they found no association between the Trusts’ performance against any of the four standards and the magnitude of the weekend effect. The authors offer three reasons as to why this may be the case. First, data quality could be poor, second, it could be that the standards themselves are inadequate for reducing mortality, finally, it could be that the weekend effect in terms of mortality may be the wrong metric by which to judge the benefits of a seven-day service. They note that their previous research demonstrated that the weekend effect is driven by admission volumes at the weekend rather than the number of deaths, so it will not be impacted by care provision, and this is consistent with the findings in this study. The spectre of opportunity cost looms over the implementation of these standards; although no direct harm may arise from the introduction of these standards, resources will be diverted away from potentially more beneficial alternatives, this is a serious concern. The seven-day debate continues.

The effect of level overlap and color coding on attribute non-attendance in discrete choice experiments. Value in Health Published 16th November 2017

I think discrete choice experiments (DCE) are difficult to complete. That may be due to me not being the sharpest knife in the drawer, or it could be due to the nature of DCEs, or a bit of both. For this reason, I like best-worst scaling (BWS). BWS aside, DCEs are a common tool used in health economics research to assess and understand preferences. Given the difficulty of DCEs, people often resort to heuristics, that is, respondents often simplify choice tasks by taking shortcuts, e.g. ignoring one or more attribute (attribute non-attendance) or always selecting the option with the highest level of a certain attribute. This has downstream consequences leading to bias within preference estimates. Furthermore, difficulty with comprehension leads to high attrition rates. This RCT sought to examine whether participant dropout and attribute non-attendance could be reduced through two methods: level overlap, and colour coding. Level overlap refers to the DCE design whereby in each choice task a certain number of attributes are presented with the same level; in different choice tasks different attributes are overlapped. The idea of this is to prevent dominant attribute strategies whereby participants always choose the option with the highest level of one specific attribute and forces them to evaluate all attributes. The second method involves colour coding and the provision of other visual cues to reduce task complexity, e.g. colour coding levels to make it easy to see which levels are equal. There were five trial arms. The control arm featured no colour coding and no attribute overlap. The other four arms featured either colour coding (two different types were tested), attribute overlap, or a combination of them both. A nationally (Dutch) representative sample in relation to age, gender, education and geographic region were recruited online. In total 3394 respondents were recruited and each arm contained over 500 respondents. Familiarisation and warm-up questions were followed by 21 pairwise choice tasks in a randomised order. For the control arm (no overlap, no colour coding) 13.9% dropped out whilst only attending to on average 2.1 out of the five attributes. Colour coding reduced this to 9.6% with 2.8 attributes being attended. Combining level overlap with intensity colour coding reduced drop out further to 7.2% whilst increasing attribute attendance to four out of five. Thus, the combination of level overlap and colour coding nearly halved the dropout and doubled the attribute attendance within the DCE task. An additional, and perhaps most important benefit of the improvement in attribute attendance is that it reduces the need to model for potential attribute non-attendance post-hoc. Given the difficult of DCE completion, it seems colour coding in combination with level overlap should be implored for future DCE tasks.

Evidence on the longitudinal construct validity of major generic and utility measures of health-related quality of life in teens with depression. Quality of Life Research [PubMed] Published 17th November 2017

There appears to be increasing recognition of the prevalence and seriousness of youth mental health problems. Nearly 20% of young people will suffer depression during their adolescent years. To facilitate cost-utility analysis it is necessary to have a measure of preference based health-related quality of life (HRQL). However, there are few measures designed for use in adolescents. This study sought to examine various existing HRQL measures in relation to their responsiveness for the evaluation of interventions targeting depression in young people. This builds on previous work conducted by Brazier et al that found the EQ-5D and SF-6D performed adequately for depression in adults. In total 392 adolescents aged between 13 and 17 years joined the study, 376 of these completed follow up assessments. Assessments were taken at baseline and 12 weeks. The justification for 12 weeks is that it represented the modal time to clinical change. The following utility instruments were included: the HUI suite, the EQ-5D-3L, Quality of Well-Being Scale (QWB), and the SF-6D (derived from SF-36). Other non-preference based HRQL measures were also included: disease-specific ratings and scales, and the PedsQL 4.0. All (yes, you read that correctly) measures were found to be responsive to change in depression symptomology over the 12-week follow up period and each of the multi-attribute utility instruments was able to detect clinically meaningful change. In terms of comparing the utility instruments, the HUI-3, the QWB and the SF-6D were the most responsive whilst the EQ-5D-3L was the least responsive. In summary, any of the utility instruments could be used. One area of disappointment for me was that the CHU-9D was not included within this study – it’s one of the few instruments that has been developed by and for children and would have very much been a worthy addition. Regardless, this is an informative study for those of us working within the youth mental health sphere.

Credits

Thesis Thursday: Koonal Shah

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Koonal Shah who has a PhD from the University of Sheffield. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
Valuing health at the end of life
Supervisors
Aki Tsuchiya, Allan Wailoo
Repository link
http://etheses.whiterose.ac.uk/17579

What were the key questions you wanted to answer with your research?

My key research question was: Do members of the general public wish to place greater weight on a unit of health gain for end of life patients than on that for other types of patients? Or put more concisely: Is there evidence of public support for an end of life premium?

The research question was motivated by a policy introduced by NICE in 2009 [PDF], which effectively gives special weighting to health gains generated by life-extending end of life treatments. This represents an explicit departure from the Institute’s reference case position that all equal-sized health gains are of equal social value (the ‘a QALY is a QALY’ rule). NICE’s policy was justified in part by claims that it represented the preferences of society, but little evidence was available to either support or refute that premise. It was this gap in the evidence that inspired my research question.

I also sought to answer other questions, such as whether the focus on life extensions (rather than quality of life improvements) in NICE’s policy is consistent with public preferences, and whether people’s stated end of life-related preferences depend on the ways in which the preference elicitation tasks are designed, framed and presented.

Which methodologies did you use to elicit people’s preferences?

All four of my empirical studies used hypothetical choice exercises to elicit preferences from samples of the UK general public. NICE’s policy was used as the framework for the designs in each case. Three of the studies can be described as having used simple choice tasks, while one study specifically applied the discrete choice experiment methodology. The general approach was to ask survey respondents which of two hypothetical patients they thought should be treated, assuming that the health service had only enough funds to treat one of them.

In my final study, which focused on framing effects and study design considerations, I included attitudinal questions with Likert item responses alongside the hypothetical choice tasks. The rationale for including these questions was to examine the consistency of respondents’ views across two different approaches (spoiler: most people are not very consistent).

Your study included face-to-face interviews. Did these provide you with information that you weren’t able to obtain from a more general survey?

The surveys in my first two empirical studies were both administered via face-to-face interviews. In the first study, I conducted the interviews myself, while in the second study the interviews were subcontracted to a market research agency. I also conducted a small number of face-to-face interviews when pilot testing early versions of the surveys for my third and fourth studies. The piloting process was useful as it provided me with first-hand information about which aspects of the surveys did and did not work well when administered in practice. It also gave me a sense of how appropriate my questions were. The subject matter – prioritising between patients described as having terminal illnesses and poor prognoses – had the potential to be distressing for some people. My view was that I shouldn’t be including questions that I did not feel comfortable asking strangers in an interview setting.

The use of face-to-face interviews was particularly valuable in my first study as it allowed me to ask debrief questions designed to probe respondents and elicit qualitative information about the thinking behind their responses.

What factors influence people’s preferences for allocating health care resources at the end of life?

My research suggests that people’s preferences regarding the value of end of life treatments can depend on whether the treatment is life-extending or quality of life-improving. This is noteworthy because NICE’s end of life criteria accommodate life extensions but not quality of life improvements.

I also found that the amount of time that end of life patients have to ‘prepare for death’ was a consideration for a number of respondents. Some of my results suggest that observed preferences for prioritising the treatment of end of life patients may be driven by concern about how long the patients have known their prognosis rather than by concern about how long they have left to live, per se.

The wider literature suggests that the age of the end of life patients (which may act as a proxy for their role in their household or in society) may also matter. Some studies have reported evidence that respondents become less concerned about the number of remaining life years when the patients in question are relatively old. This is consistent with the ‘fair innings’ argument proposed by Alan Williams.

Given the findings of your study, are there any circumstances under which you would support an end of life premium?

My findings offer limited support for an end of life premium (though it should be noted that the wider literature is more equivocal). So it might be considered appropriate for NICE to abandon its end of life policy on the grounds that the population health losses that arise due to the policy are not justified by the evidence on societal preferences. However, there may be arguments for retaining some form of end of life weighting irrespective of societal preferences. For example, if the standard QALY approach systematically underestimates the benefits of end of life treatments, it may be appropriate to correct for this (though whether this is actually the case would itself need investigating).

Many studies reporting that people wish to prioritise the treatment of the severely ill have described severity in terms of quality of life rather than life expectancy. And some of my results suggest that support for an end of life premium would be stronger if it applied to quality of life-improving treatments. This suggests that weighting QALYs in accordance with continuous variables capturing quality of life as well as life expectancy may be more consistent with public preferences than the current practice of applying binary cut-offs based only on life expectancy information, and would address some of the criticisms of the arbitrariness of NICE’s policy.