Alastair Canaway’s journal round-up for 28th May 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Information, education, and health behaviours: evidence from the MMR vaccine autism controversy. Health Economics [PubMed] Published 2nd May 2018

In 1998, Andrew Wakefield published (in the Lancet) his infamous and later retracted research purportedly linking the measles-mumps-rubella (MMR) vaccine and autism. Despite the thorough debunking and exposure of academic skulduggery, a noxious cloud of misinformation remained in the public mind, particularly in the US. This study examined several facets of the MMR fake news including: what impact did this have on vaccine uptake in the US (both MMR and other vaccines); how did state level variation in media coverage impact uptake; and what role did education play in subsequent decisions about whether to vaccinate or not. This study harnessed the National Immunization Survey from 1995 to 2006 to answer these questions. This is a yearly dataset of over 200,000 children aged between 19 to 35 months with detailed information on not just immunisation, but also maternal education, income and other sociodemographics. The NewsLibrary database was used to identify stories published in national and state media relating to vaccines and autism. Various regression methods were implemented to examine these data. The paper found that, unsurprisingly, for the year following the Wakefield publication the MMR vaccine take-up declined by between 1.1%-1.5% (notably less than 3% in the UK), likewise this fall in take-up spilled over into other vaccines take-up. The most interesting finding related to education: MMR take-up for children of college-educated mothers declined significantly compared to those without a degree. This can be explained by the education gradient where more-educated individuals absorb and respond to health information more quickly. However, in the US, this continued for many years beyond 2003 despite proliferation of research refuting the autism-MMR link. This contrasts to the UK where educational link closed soon after the findings were refuted, that is, in the UK, the educated responded to the new information refuting the MMR-Autism link. In the US, despite the research being debunked, MMR uptake was lower in the children of those with higher levels of education for many more years. The author speculates that this contrast to the UK may be a result of the media influencing parents’ decisions. Whilst the media buzz in the UK peaked in 2002, it had largely subsided by 2003. In the US however, the media attention was constant, if not increasing till 2006, and so this may have been the reason the link remained within the US. So, we have Andrew Wakefield and arguably fearmongering media to blame for causing a long-term reduction in MMR take-up in the US. Overall, an interesting study leaning on multiple datasets that could be of interest for those working with big data.

Can social care needs and well-being be explained by the EQ-5D? Analysis of the Health Survey for England. Value in Health Published 23rd May 2018

There is increasing discussion about integrating health and social care to provide a more integrated approach to fulfilling health and social care needs. This creates challenges for health economists and decision makers when allocating resources, particularly when comparing benefits from different sectors. NICE itself recognises that the EQ-5D may be inappropriate in some situations. With the likes of ASCOT, ICECAP and WEMWBS frequenting the health economics world this isn’t an unknown issue. To better understand the relationship between health and social care measures, this EuroQol Foundation funded study examined the relationship between social care needs as measured by the Barthel Index, well-being measured using WEMWBS and also the GGH-12, and the EQ-5D as the measure of health. Data was obtained through the Health Survey for England (HSE) and contained 3354 individuals aged over 65 years. Unsurprisingly the authors found that higher health and wellbeing scores were associated with an increased probability of no social care needs. Those who are healthier or at higher levels of wellbeing are less likely to need social care. Of all the instruments, it was the self-care and the pain/discomfort dimensions of the EQ-5D that were most strongly associated with the need for social care. No GHQ-12 dimensions were statistically significant, and for the WEMWBS only the ‘been feeling useful’ and ‘had energy to spare’ were statistically significantly associated with social care need. The authors also investigated various other associations between the measures with many unsurprising findings e.g. EQ-5D anxiety/depression dimension was negatively associated with wellbeing as measured using the GHQ-12. Although the findings are favourable for the EQ-5D in terms of it capturing to some extent social care needs, there is clearly still a gap whereby some outcomes are not necessarily captured. Considering this, the authors suggest that it might be appropriate to strap on an extra dimension to the EQ-5D (known as a ‘bolt on’) to better capture important ‘other’ dimensions, for example, to capture dignity or any other important social care outcomes. Of course, a significant limitation with this paper relates to the measures available in the data. Measures such as ASCOT and ICECAP have been developed and operationalised for economic evaluation with social care in mind, and a comparison against these would have been more informative.

The health benefits of a targeted cash transfer: the UK Winter Fuel Payment. Health Economics [PubMed] [RePEc] Published 9th May 2018

In the UK, each winter is accompanied by an increase in mortality, often known as ‘excess winter mortality’ (EWM). To combat this, the UK introduced the Winter Fuel Payment (WFP), the purpose of the WFP is an unconditional cash transfer to households containing an older person (those most vulnerable to EWM) above the female state pension age with the intent for this to used to help the elderly deal with the cost of keeping their dwelling warm. The purpose of this paper was to examine whether the WFP policy has improved the health of elderly people. The authors use the Health Surveys for England (HSE), the Scottish health Survey (SHeS) and the English Longitudinal Study of Ageing (ELSA) and employ a regression discontinuity design to estimate causal effects of the WFP. To measure impact (benefit) they focus on circulatory and respiratory illness as measured by: self-reports of chest infection, nurse measured hypertension, and two blood biomarkers for infection and inflammation. The authors found that for those living in a household receiving the payment there was a 6% point reduction (p<0.01) in the incidence of high levels of serum fibrinogen (biomarker) which are considered to be a marker of current infection and are associated with chronic pulmonary disease. For the other health outcomes, although positive, the estimated effects were less robust and not statistically significant. The authors investigated the impact of increasing the age of eligibility for the WFP (in line with the increase of women’s pension age). Their findings suggest there may be some health cost associated with the increase in age of eligibility for WFP. To surmise, the paper highlights that there may be some health benefits from the receipt of the WFP. What it doesn’t however consider is opportunity cost. With WFP costing about £2 billion per year, as a health economist, I can’t help but wonder if the money could have been better spent through other avenues.

Credits

 

Chris Sampson’s journal round-up for 19th June 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Health-related resource-use measurement instruments for intersectoral costs and benefits in the education and criminal justice sectors. PharmacoEconomics [PubMed] Published 8th June 2017

Increasingly, people are embracing a societal perspective for economic evaluation. This often requires the identification of costs (and benefits) in non-health sectors such as education and criminal justice. But it feels as if we aren’t as well-versed in capturing these as we are in the health sector. This study reviews the measures that are available to support a broader perspective. The authors search the Database of Instruments for Resource Use Measurement (DIRUM) as well as the usual electronic journal databases. The review also sought to identify the validity and reliability of the instruments. From 167 papers assessed in the review, 26 different measures were identified (half of which were in DIRUM). 21 of the instruments were only used in one study. Half of the measures included items relating to the criminal justice sector, while 21 included education-related items. Common specifics for education included time missed at school, tutoring needs, classroom assistance and attendance at a special school. Criminal justice sector items tended to include legal assistance, prison detainment, court appearances, probation and police contacts. Assessments of the psychometric properties was found for only 7 of the 26 measures, with specific details on the non-health items available for just 2: test-retest reliability for the Child and Adolescent Services Assessment (CASA) and validity for the WPAI+CIQ:SHP,V2 (there isn’t room on the Internet for the full name). So there isn’t much evidence of any validity for any of these measures in the context of intersectoral (non-health) costs and benefits. It’s no doubt the case that health-specific resource use measures aren’t subject to adequate testing, but this study has identified that the problem may be even greater when it comes to intersectoral costs and benefits. Most worrying, perhaps, is the fact that 1 in 5 of the articles identified in the review reported using some unspecified instrument, presumably developed specifically for the study or adapted from an off-the-shelf instrument. The authors propose that a new resource use measure for intersectoral costs and benefits (RUM ICB) be developed from scratch, with reference to existing measures and guidance from experts in education and criminal justice.

Use of large-scale HRQoL datasets to generate individualised predictions and inform patients about the likely benefit of surgery. Quality of Life Research [PubMed] Published 31st May 2017

In the NHS, EQ-5D data are now routinely collected from patients before and after undergoing one of four common procedures. These data can be used to see how much patients’ health improves (or deteriorates) following the operations. However, at the individual level, for a person deciding whether or not to undergo the procedure, aggregate outcomes might not be all that useful. This study relates to the development of a nifty online tool that a prospective patient can use to find out the expected likelihood that they will feel better, the same or worse following the procedure. The data used include EQ-5D-3L responses associated with almost half a million unilateral hip or knee replacements or groin hernia repairs between April 2009 and March 2016. Other variables are also included, and central to this analysis is a Likert scale about improvement or worsening of hip/knee/hernia problems compared to before the operation. The purpose of the study is to group people – based on their pre-operation characteristics – according to their expected postoperative utility scores. The authors employed a recursive Classification and Regression Tree (CART) algorithm to split the datasets into strata according to the risk factors. The final set of risk variables were age, gender, pre-operative EQ-5D-3L profile and symptom duration. The CART analysis grouped people into between 55 and 60 different groups for each of the procedures, with the groupings explaining 14-27% of the variation in postoperative utility scores. Minimally important (positive and negative) differences in the EQ-5D utility score were estimated with reference to changes in the Likert scale for each of the procedures. These ranged in magnitude from 0.041 to 0.106. The resulting algorithms are what drive the results delivered by the online interface (you can go and have a play with it). There are a few limitations to the study, such as the reliance on complete case analysis and the fact that the CART analysis might lack predictive ability. And there’s an interesting problem inherent in all of this, that the more people use the tool, the less representative it will become as it influences selection into treatment. The validity of the tool as a precise risk calculator is quite limited. But that isn’t really the point. The point is that it unlocks some of the potential value of PROMs to provide meaningful guidance in the process of shared decision-making.

Can present biasedness explain early onset of diabetes and subsequent disease progression? Exploring causal inference by linking survey and register data. Social Science & Medicine [PubMed] Published 26th May 2017

The term ‘irrational’ is overused by economists. But one situation in which I am willing to accept it is with respect to excessive present bias. That people don’t pay enough attention to future outcomes seems to be a fundamental limitation of the human brain in the 21st century. When it comes to diabetes and its complications, there are lots of treatments available, but there is only so much that doctors can do. A lot depends on the patient managing their own disease, and it stands to reason that present bias might cause people to manage their diabetes poorly, as the value of not going blind or losing a foot 20 years in the future seems less salient than the joy of eating your own weight in carbs right now. But there’s a question of causality here; does the kind of behaviour associated with time-inconsistent preferences lead to poorer health or vice versa? This study provides some insight on that front. The authors outline an expected utility model with quasi-hyperbolic discounting and probability weighting, and incorporate a present bias coefficient attached to payoffs occurring in the future. Postal questionnaires were collected from 1031 type 2 diabetes patients in Denmark with an online discrete choice experiment as a follow-up. These data were combined with data from a registry of around 9000 diabetes patients, from which the postal/online participants were identified. BMI, HbA1c, age and year of diabetes onset were all available in the registry and the postal survey included physical activity, smoking, EQ-5D, diabetes literacy and education. The DCE was designed to elicit time preferences using the offer of (monetary) lottery wins, with 12 different choice sets presented to all participants. Unfortunately, despite the offer of a real-life lottery award for taking part in the research, only 79 of 1031 completed the online DCE survey. Regression analyses showed that individuals with diabetes since 1999 or earlier, or who were 48 or younger at the time of onset, exhibited present bias. And the present bias seems to be causal. Being inactive, obese, diabetes illiterate and having lower quality of life or poorer glycaemic control were associated with being present biased. These relationships hold when subject to a number of control measures. So it looks as if present bias explains at least part of the variation in self-management and health outcomes for people with diabetes. Clearly, the selection of the small sample is a bit of a concern. It may have meant that people with particular risk preferences (given that the reward was a lottery) were excluded, and so the sample might not be representative. Nevertheless, it seems that at least some people with diabetes could benefit from interventions that increase the salience of future health-related payoffs associated with self-management.

Credits

Chris Sampson’s journal round-up for 16th May 2016

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Higher mortality rates amongst emergency patients admitted to hospital at weekends reflect a lower probability of admission. Journal of Health Services Research & Policy Published 6th May 2016

The ‘weekend effect‘ is the hot topic in health policy in the UK right now. Whether or not it exists, and whether or not it can be corrected by steamrollering junior doctors’ contracts, has major implications for the NHS. In this study the authors used data on 12.7 million A&E attendances and 4.7 million emergency admissions in England in 2013-14. It’s possible to be admitted to hospital via A&E or directly from a community service. A&E is available 24/7, while community services are more limited at the weekend. The analyses mainly use logistic regressions with the usual case-mix adjustments to estimate the probability of death within 30 days. Weekend attendance at A&E was not associated with a significantly higher probability of death than attendance during the week. On Saturday or Sunday, there were 7% fewer admissions via A&E than on weekdays. The number of direct admissions via referral from community services was a whopping 61% lower at weekends. For both groups of people admitted, the mortality rate at the weekend was higher than on weekdays; we see the familiar weekend effect. The 7% difference in A&E admission rates could not be explained by the patient characteristics available in the data, suggesting that a higher admission threshold is used at weekends. There was no weekend effect associated with A&E attendances, which is perhaps what a lot of people have in mind when they think about this issue. Only those admitted at the weekend have a higher mortality rate, and in particular those referred from community services. The implication is that mortality rates hide the true story by combining the number of people dying (the numerator) with the number of people being admitted (the denominator). Increasing the number of doctors available at weekends might increase the number of people being admitted (at great cost) but with no reduction in the number of deaths. Patients who are admitted to hospital at the weekend are a different group of people, and different in a way that has not yet been adequately captured by risk-adjustment.

Ageing, justice and resource allocation. Journal of Medical Ethics [PhilPapers] [PubMedPublished 4th May 2016

People are living longer. This contributes to health care expenditure growth as people require more treatment to keep them alive. In this paper, the author argues that we should not focus only on the role of life-prolonging treatments but also on life-enhancing treatments. How people age and the ways in which the chances of becoming ill vary with age ought to be considered in resource allocation decisions. Social context is important in this respect; for example, the availability of public toilets may influence an older person’s willingness to engage in their usual activities. The arguments presented focus mainly on Norman Daniels’s prudential lifespan approach, which essentially considers whether or not a person would choose to purchase insurance for a particular health problem. We would expect an ageing population to insure more against the health problems of later life, and so proportionally greater resources ought to be allocated to older people. But the paper does not pursuade me that this requires any departure from current practice or thought. When Alan Williams described the fair innings approach to just allocations of resources in old age, he was expressly concerned with the quality of life. I’m not clear on what this paper adds, aside from further criticism of Harris’s view that life-extending treatment should always trump life-enhancing treatment. But I know of nobody who actually supports that view. Nevertheless, it’s an interesting discussion with which I hope health economists will engage.

An elicitation of utility for quality of life under prospect theory. Journal of Health Economics [RePEcPublished 2nd May 2016

Back in 1979, Kahneman and Tversky introduced prospect theory. Simply, this deviation from expected utility theory demonstrates that people value gains and losses from a given reference point differently, and that people’s decisions relate to probabilities in a nonlinear way. One of the key aspects of prospect theory is that it allows for loss aversion, which has been observed in the health context. We may therefore wish to develop methods for the estimation of QALYs that are based on prospect theory. This study demonstrates the limited validity of expected utility in estimating QALYs and shows how to estimate utility using prospect theory. A representative Dutch sample of 500 people was recruited for 2 experiments carried out online. Demographic and health state data were collected and participants were presented with possible gains and losses in quality of life within a 20%-100% interval associated with a specified reference point. Loss aversion was observed in both experiments, with evidence that responses were reference-dependent. Furthermore, there was risk aversion associated with both gains and losses. This undermines expected utility as a reasonable basis on which to estimate QALYs. Furthermore, the study found utility to be concave, such that a loss from 60% to 40% was perceived as smaller than a loss from 40% to 20%. This not only differs from the way in which we estimate QALYs, but also from the nature of prospect theory in the valuation of monetary outcomes. Expect to hear plenty more about PT-QALYs in the future.

Efficiency of health investment: education or intelligence? Health Economics [PubMedPublished 3rd May 2016

People with better education are healthier and live longer. But is this due to their education, or simply due to intelligence? It should go without saying that measuring intelligence, let alone separating it from the effects of education, is not straightforward. This study looks at whether education is associated with a higher efficiency of health investment. Health outcome is measured as survival and health investment as hospitalisation for a given condition. The authors then go on to consider the extent to which any benefit is due to intelligence. The data include 2570 Dutch individuals surveyed in 1952 in their final year of primary school and then followed up again in 1983 and 1993. The sample includes those people with hospitalisation records for 1995-2005 and mortality data for 1995-2011. A structural equation model is estimated to capture the impact of intelligence with the states ‘healthy’, ‘hospitalised’ and ‘dead’. Intelligence is modelled as a latent variable based on an IQ test and a vocabulary test at the age of 12. The analysis treats education choice as exogenous but controls for numerous socioeconomic and school-specific variables. People with higher education were less likely to die after a hospitalisation, though this relationship disappears once intelligence is accounted for. This suggests that the health investment advantage of the better educated is due to intelligence. There are plenty of limitations to the study in terms of the available data, but the findings nevertheless suggest that education per se might not be as beneficial to health as previous studies have shown.