Thesis Thursday: Firdaus Hafidz

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Firdaus Hafidz who has a PhD from the University of Leeds. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
Assessing the efficiency of health facilities in Indonesia
Supervisors
Tim Ensor, Sand Tubeuf
Repository link
http://etheses.whiterose.ac.uk/id/eprint/21575

What are some of the key features of health and health care in Indonesia?

Indonesia is a diverse country, with more than 17 thousand islands and 500 districts. Thus, there is a wide discrepancy of health outcomes across Indonesia, which also reflects the country’s double burden of both communicable and emerging non-communicable diseases. Communicable diseases such as tuberculosis, diarrhoea and lower respiratory tract infections remain as significant issues in Indonesia, especially in remote areas. At the same time, non-communicable diseases are becoming a major public health problem, especially in urban areas.

Total healthcare expenditure per capita grew rapidly, but in certain outcomes, such as maternal mortality rate, Indonesia performs less well than other low- and middle-income countries. Health facilities represent the largest share of healthcare expenditures, but utilisation is still considered low in both hospitals and primary healthcare facilities. Given the scarcity of public healthcare resources, out-of-pocket expenditure remains considerably higher than the global average.

To reduce financial barriers, the Government of Indonesia introduced health insurance in 1968. Between 2011 and 2014, there were three major insurance schemes: 1) Jamkesmas – poor scheme; 2) Jamsostek – formal sector workers scheme; and 3) Askes – civil servant scheme. In 2014, the three schemes were combined into a single-entity National Health Insurance scheme.

What methods can be used to measure the efficiency of health care in low and middle-income countries?

We reviewed measurements of efficiency in empirical analyses conducted in low- and middle-income countries. Methods, including techniques, variables, and efficiency indicators were summarised. There was no consensus on the most appropriate technique to measure efficiency, though most existing studies have relied on ratio analysis and data envelopment analysis because it is simple, easy to compute, low-cost and can be performed on small samples. The physical inputs included the type of capital (e.g. the number of beds and size of health facilities) and the type of labour (e.g. the number of medical and non-medical staff). Most of the published literature used health services as outputs (e.g. the number of outpatient visits, admission and inpatient days). However, because of poor data availability, fewer studies used case-mix and quality indicators to adjust outputs. So most of the studies in the literature review assumed that there was no difference in the severity and effectiveness of healthcare services. Despite the complexity of the techniques, researchers are responsible to provide interpretable results to the policymakers to guide their decisions for a better health policy on efficiency. Adopting appropriate methods that have been used globally would be beneficial to benchmark empirical studies.

Were you able to identify important sources of inefficiency in Indonesia?

We used several measurement techniques including frontier analysis and ratio analysis. We explored contextual variables to assess factors determining efficiency. The range of potential models produced help policymakers in the decision-making process according to their priority and allow some control over the contextual variables. The results revealed that the efficiency of primary care facilities can be explained by population health insurance coverage, especially through the insurance scheme for the poor. Geographical factors, such as the main islands (Java or Bali), better access to health facility, and location in an urban area also have a strong impact on efficiency. At the hospitals, the results highlighted higher efficiency levels in larger hospitals; they were more likely to present in deprived areas with low levels of education; and they were located on Java or Bali. Greater health insurance coverage also had a positive and significant influence on efficiency.

How could policymakers improve the efficiency of health care in Indonesia or other similar settings?

I think there are several ideas. First, we need to have a careful tariff adjustment as we found an association between low unit costs and high efficiency scores. Case base group tariffs need to account for efficiency scores to prevent unnecessary incentives for the providers, exacerbating inefficiency in the health system.

Secondly, we need flexibility in employment contracts, particularly for the less productive civil servant worker so the less productive worker could be reallocated. We also need a better remuneration policy to attract skilled labour and improve health facilities efficiency.

From the demand side, reducing physical barriers by improving infrastructure could increase efficiency in the rural health care facilities through higher utilisation of care. Facilities with very low utilisation rates still incur a fixed cost and thus create inefficiency. Through the same argument we also need to reduce financial barriers using incentives programmes and health insurance, thus patients who are economically disadvantaged can access healthcare services.

How would you like to see other researchers build on your work?

Data quality is crucial in secondary data analysis research, and it was quite a challenge in an Indonesian setting. Meticulous data management is needed to mitigate data errors such as inconsistency, outliers and missing values.

As this study used a 2011 cross-sectional dataset, replicating this study using a more recent and even longitudinal data would highlight changes in efficiency due to policy changes or interventions. Particularly interesting is the effect of the 2014 implementation of Indonesian national health insurance.

My study has some limitations and thus warrants further investigation. The stochastic frontier analysis failed to identify any inefficiency at hospitals when outpatient visits were included. The statistical errors of the frontier function cannot be distinguished from the inefficiency effect of the model. It might be related to the volume and heterogeneity of outpatient services which swamps the total volume of services and masks any inefficiency.

Chris Sampson’s journal round-up for 17th December 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Health related quality of life aspects not captured by EQ-5D-5L: results from an international survey of patients. Health Policy Published 14th December 2018

Generic preference-based measures, such as the EQ-5D, cannot capture all aspects of health-related quality of life. They’re not meant to. Rather, their purpose is to capture just enough information to be able to adequately distinguish between health states with respect to the domains deemed normatively relavent to decisionmakers. The stated aim of this paper is to determine whether people with a variety of chronic conditions believe that their experiences can be adequately represented by the EQ-5D-5L.

The authors conducted an online survey, identifying participants through 320 patient associations across 47 countries. Participants were asked to complete the EQ-5D-5L and then asked if any aspects of their illness, which had a “big impact” on their health, were not captured by the EQ-5D-5L. 1,031 people started the survey and 767 completed it. More than half were from the UK. 51% of respondents said that there was some aspect of health not captured by the EQ-5D-5L. Of them, 19% mentioned fatigue, 12% mentioned medication side effects, 9.5% mentioned co-morbid conditions, and then a bunch of others in smaller proportions.

It’s nice to know what people think, but I have a few concerns about the usefulness of this study. One of the main problems is that it doesn’t seem safe to assume that respondents interpret “big impact” as meaning “an impact that is independently important in determining your overall level of quality of life”. So, even if we accept that people judging something to be important makes it important (which I’m not sure it does), then we still can’t be sure whether what they are identifying is within the scope of what we’re trying to measure. For starters, I can see no justification for including a ‘medication side effects’ domain. There’s also some concern about selection and attrition. I’d guess that people with more complicated or less common health concerns would be more likely to start and finish a survey about more complicated or less common health concerns.

The main thing I took from this study is that half of respondents with chronic diseases thought that the EQ-5D-5L captured every single aspect of health that had a “big impact”, and that there wasn’t broad support for any other specific dimension.

Reducing drug wastage in pharmaceuticals dosed by weight or body surface areas by optimising vial sizes. Applied Health Economics and Health Policy [PubMed] Published 5th December 2018

It’s common for pharmaceuticals to be wasted. Not just those out-of-date painkillers you threw in the bin, but also the expensive stuff being used in hospitals. One of the main reasons that waste occurs is that vials are made to specific sizes and, often, dosage varies from patient to patient – according to weight, for example – and doesn’t match the vial size. Suppose that vials are available as 50mg and 80mg and that an individual requires a 60mg dose. One way to address this might be to allow for vial sharing, whereby the leftovers are given to the next patient. But that isn’t always possible. So, we might like to consider what the best combination of available vial sizes should be, given the characteristics of the population.

In this paper, the authors set out the problem mathematically. Essentially, the optimisation problem is to minimise cost across the population subject to the vial sizes. An example is presented for two drugs (pembrolizumab and cabazitaxel), simulating patients based on samples drawn from the Health Survey for England. Simplifications are applied to the examples, such as setting a constraint of 8 vials per patient and assuming that prices are linear (i.e. fixed per milligram).

Pembrolizumab is currently available in 50mg and 100mg vials, and the authors estimate current wastage to be 13.2%. The simulations show that switching the 50mg to a 70mg would cut wastage to 8.6%. Cabazitaxel is available in 60mg vials, resulting in 19.4% wastage. Introducing a 12.5mg vial would cut wastage by around two thirds. An important general finding, which should be self-evident, is that vial sizes should not be divisible by each other, as this limits the number of possible combinations.

Depending on when vial sizes are determined (e.g. pre- or post-authorisation), pharmaceutical companies might use it to increase profit margins, or health systems might use it to save costs. Regardless, wastage isn’t useful. Evidence-based manufacture is an example of one of those best ideas; the sort that is simple and seems obvious once it’s spelt out. It’s a rare opportunity to benefit patients, health care providers, and manufacturers, with no significant burden on policymakers.

Death or debt? National estimates of financial toxicity in persons with newly-diagnosed cancer. The American Journal of Medicine [PubMed] Published October 2018

If you’re British, what’s the scariest thing about an ‘Americanised’ (/Americanized) health care system? Expensive inhalers? A shortened life expectancy? My guess is that the prospect of having to add financial ruin to terminal illness looms pretty large. You should make sure your fear is evidence-based. Here’s a paper to shake in the face of anyone who doesn’t support universal health care.

The authors use data from the Health and Retirement Study from 1998-2014, which includes people over 50 years of age and includes new (self-reported) diagnoses of cancer. This was the basis for inclusion in the study, with over 9.5 million new diagnoses of cancer. Up to two years pre-diagnosis was taken as a baseline. The data set also includes information on participants’ assets and debts, allowing the authors to use change in net worth as the primary outcome. Generalised linear models were used to assess various indicators of financial toxicity, including change or incurrence of consumer debt, mortgage debt, and home equity debt at two- and four-year follow-up. In addition to cancer diagnosis, various chronic comorbidities and socio-demographic variables were included in the models.

Shockingly, after two years following diagnosis, 42.4% of people had depleted their entire life’s assets. Average net worth had dropped $92,000. After four years, 38.2% were still insolvent. Women, older people, people who weren’t White, people with Medicaid, and those with worsening cancer status were among those more likely to have completely depleted their assets within two years. Having private insurance and being married had protective effects, as we might expect. There were some interesting findings associated with the 2008 financial crisis, which also seemed to be protective. And a protective effect associated with psychiatric comorbidity deserves more thought.

It’s difficult to explain away any (let alone all) of the magnitude of these findings. The analysis seems robust. But, given all other evidence available about out-of-pocket costs for cancer patients in the US, it should be shocking but not unexpected. The authors describe financial toxicity as ‘unintended’. There’s nothing unintended about this. Policymakers in the US keep deciding that they’d prefer to destroy the lives of sick people than allow for the spreading of that financial risk.

Credits

Sam Watson’s journal round-up for 25th June 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

The efficiency of slacking off: evidence from the emergency department. Econometrica [RePEc] Published May 2018

Scheduling workers is a complex task, especially in large organisations such as hospitals. Not only should one consider when different shifts start throughout the day, but also how work is divided up over the course of each shift. Physicians, like anyone else, value their leisure time and want to go home at the end of a shift. Given how they value this leisure time, as the end of a shift approaches physicians may behave differently. This paper explores how doctors in an emergency department behave at ‘end of shift’, in particular looking at whether doctors ‘slack off’ by accepting fewer patients or tasks and also whether they rush to finish those tasks they have. Both cases can introduce inefficiency by either under-using their labour time or using resources too intensively to complete something. Immediately, from the plots of the raw data, it is possible to see a drop in patients ‘accepted’ both close to end of shift and close to the next shift beginning (if there is shift overlap). Most interestingly, after controlling for patient characteristics, time of day, and day of week, there is a decrease in the length of stay of patients accepted closer to the end of shift, which is ‘dose-dependent’ on time to end of shift. There are also marked increases in patient costs, orders, and inpatient admissions in the final hour of the shift. Assuming that only the number of patients assigned and not the type of patient changes over the course of a shift (a somewhat strong assumption despite the additional tests), then this would suggest that doctors are rushing care and potentially providing sub-optimal or inefficient care closer to the end of their shift. The paper goes on to explore optimal scheduling on the basis of the results, among other things, but ultimately shows an interesting, if not unexpected, pattern of physician behaviour. The results relate mainly to efficiency, but it’d be interesting to see how they relate to quality in the form of preventable errors.

Semiparametric estimation of longitudinal medical cost trajectory. Journal of the American Statistical Association Published 19th June 2018

Modern computational and statistical methods have opened up a range of statistical models to estimation hitherto inestimable. This includes complex latent variable structures, non-linear models, and non- and semi-parametric models. Recently we covered the use of splines for semi-parametric modelling in our Method of the Month series. Not that complexity is everything of course, but given this rich toolbox to more faithfully replicate the data generating process, one does wonder why the humble linear model estimated with OLS remains so common. Nevertheless, I digress. This paper addresses the problem of estimating the medical cost trajectory for a given disease from diagnosis to death. There are two key issues: (i) the trajectory is likely to be non-linear with costs probably increasing near death and possibly also be higher immediately after diagnosis (a U-shape), and (ii) we don’t observe the costs of those who die, i.e. there is right-censoring. Such a set-up is also applicable in other cases, for example looking at health outcomes in panel data with informative dropout. The authors model medical costs for each month post-diagnosis and time of censoring (death) by factorising their joint distribution into a marginal model for censoring and a conditional model for medical costs given the censoring time. The likelihood then has contributions from the observed medical costs and their times, and the times of the censored outcomes. We then just need to specify the individual models. For medical costs, they use a multivariate normal with mean function consisting of a bivariate spline of time and time of censoring. The time of censoring is modelled non-parametrically. This setup of the missing data problem is sometimes referred to as a pattern mixing model, in that the outcome is modelled as a mixture density over different populations dying at different times. The authors note another possibility for informative missing data, which was considered not to be estimable for complex non-linear structures, was the shared parameter model (to soon appear in another Method of the Month) that assumes outcomes and dropout are independent conditional on an underlying latent variable. This approach can be more flexible, especially in cases with varying treatment effects. One wonders if the mixed model representation of penalised splines wouldn’t fit nicely in a shared parameter framework and provide at least as good inferences. An idea for a future paper perhaps… Nevertheless, the authors illustrate their method by replicating the well-documented U-shaped costs from the time of diagnosis in patients with stage IV breast cancer.

Do environmental factors drive obesity? Evidence from international graduate students. Health Economics [PubMedPublished 21st June 2018

‘The environment’ can encompass any number of things including social interactions and networks, politics, green space, and pollution. Sometimes referred to as ‘neighbourhood effects’, the impact of the shared environment above and beyond the effect of individual risk factors is of great interest to researchers and policymakers alike. But there are a number of substantive issues that hinder estimation of neighbourhood effects. For example, social stratification into neighbourhoods likely means people living together are similar so it is difficult to compare like with like across neighbourhoods; trying to model neighbourhood choice will also, therefore, remove most of the variation in the data. Similarly, this lack of common support, i.e. overlap, between people from different neighbourhoods means estimated effects are not generalisable across the population. One way of getting around these problems is simply to randomise people to neighbourhoods. As odd as that sounds, that is what occurred in the Moving to Opportunity experiments and others. This paper takes a similar approach in trying to look at neighbourhood effects on the risk of obesity by looking at the effects of international students moving to different locales with different local obesity rates. The key identifying assumption is that the choice to move to different places is conditionally independent of the local obesity rate. This doesn’t seem a strong assumption – I’ve never heard a prospective student ask about the weight of our student body. Some analysis supports this claim. The raw data and some further modelling show a pretty strong and robust relationship between local obesity rates and weight gain of the international students. Given the complexity of the causes and correlates of obesity (see the crazy diagram in this post) it is hard to discern why certain environments contribute to obesity. The paper presents some weak evidence of differences in unhealthy behaviours between high and low obesity places – but this doesn’t quite get at the environmental link, such as whether these behaviours are shared through social networks or perhaps the structure and layout of the urban area, for example. Nevertheless, here is some strong evidence that living in an area where there are obese people means you’re more likely to become obese yourself.

Credits