36th EuroQol Plenary Meeting

The 36th EuroQol Plenary Meeting will be held on 18-21 September 2019 in Brussels, Belgium.

  • 10 April 2019: Deadline submitting abstracts
  • 11 April – 21 April 2019: Review and selection of abstracts
  • 29 April 2019: Abstract acceptance notification
  • 12 June 2019: Deadline submitting papers and posters
  • 13 June – 26 June 2019: Review of submitted papers and posters
  • 8 July 2019: Papers and posters published on EuroQol members’ website

Chris Sampson’s journal round-up for 17th June 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Mental health: a particular challenge confronting policy makers and economists. Applied Health Economics and Health Policy [PubMed] Published 7th June 2019

This paper has a bad title. You’d never guess that its focus is on the ‘inconsistency of preferences’ expressed by users of mental health services. The idea is that people experiencing certain mental health problems (e.g. depression, conduct disorders, ADHD) may express different preferences during acute episodes. Preference inconsistency, the author explains, can result in failures in prediction (because behaviour may contradict expectations) and failures in evaluation (because… well, this is a bit less clear). Because of preference inconsistency, a standard principal-agent model cannot apply to treatment decisions. Conventional microeconomic theory cannot apply. If this leaves you wondering “so what has this got to do with economists?” then you’re not alone. The author of this article believes that our role is to identify suitable agents who can interpret patients’ inconsistent preferences and make appropriate decisions on their behalf.

But, after introducing this challenge, the framing of the issue seems to change and the discussion becomes about finding an agent who can determine a patient’s “true preferences” from “conflicting statements”. That seems to me to be a bit different from the issue of ‘inconsistent preferences’, and the phrase “true preferences” should raise an eyebrow of any sceptical economist. From here, the author describes some utility models of perfect agency and imperfect agency – the latter taking account of the agent’s opportunity cost of effort. The models include error in judging whether the patient is exhibiting ‘true preferences’ and the strength of the patient’s expression of preference. Five dimensions of preference with respect to treatment are specified: when, what, who, how, and where. Eight candidate agents are specified: family member, lay helper, worker in social psychiatry, family physician, psychiatrist/psychologist, health insurer, government, and police/judge. The knowledge level of each agent in each domain is surmised and related to the precision of estimates for the utility models described. The author argues that certain agents are better at representing a patient’s ‘true preferences’ within certain domains, and that no candidate agent will serve an optimal role in every domain. For instance, family members are likely to be well-placed to make judgements with little error, but they will probably have a higher opportunity cost than care professionals.

The overall conclusion that different agents will be effective in different contexts seems logical, and I support the view of the author that economists should dedicate themselves to better understanding the incentives and behaviours of different agents. But I’m not convinced by the route to that conclusion.

Exploring the impact of adding a respiratory dimension to the EQ-5D-5L. Medical Decision Making [PubMed] Published 16th May 2019

I’m currently working on a project to develop and test EQ-5D bolt-ons for cognition and vision, so I was keen to see the methods reported in this study. The EQ-5D-5L has been shown to have only a weak correlation with clinically-relevant changes in the context of respiratory disease, so it might be worth developing a bolt-on (or multiple bolt-ons) that describe relevant functional changes not captured by the core dimensions of the EQ-5D. In this study, the authors looked at how the inclusion of respiratory dimensions influenced utility values.

Relevant disease-specific outcome measures were reviewed. The researchers also analysed EQ-5D-3L data and disease-specific outcome measure data from three clinical studies in asthma and COPD, to see how much variance in visual analogue scores was explained by disease-specific items. The selection of potential bolt-ons was also informed by principal-component analysis to try to identify which items form constructs distinct from the EQ-5D dimensions. The conclusion of this process was that two other dimensions represented separate constructs and could be good candidates for bolt-ons: ‘limitations in physical activities due to shortness of breath’ and ‘breathing problems’. Some think-aloud interviews were conducted to ensure that the bolt-ons made sense to patients and the general public.

A valuation study using time trade-off and discrete choice experiments was conducted in the Netherlands with a representative sample of 430 people from the general public. The sample was split in two, with each half completing the EQ-5D-5L with one or the other bolt-on. The Dutch EQ-5D-5L valuation study was used as a comparator data set. The inclusion of the bolt-ons seemed to extend the scale of utility values; the best-functioning states were associated with higher utility values when the bolt-ons were added and the worst-functioning states were associated with lower values. This was more pronounced for the ‘breathing problems’ bolt-on. The size of the coefficients on the two bolt-ons (i.e. the effect on utility values) was quite different. The ‘physical activities’ bolt-on had coefficients similar in size to self-care and usual activities. The coefficients on the ‘breathing problems’ bolt-on were a bit larger, comparable in size with those of the mobility dimension.

The authors raise an interesting question in light of their findings from the development process, in which the quantitative analysis supported a ‘symptoms’ dimension and patients indicated the importance of a dimension relating to ‘physical activities’. They ask whether it is more important for an item to be relevant or for it to be quantitatively important for valuation. Conceptually, it seems to me that the apparent added value of a ‘physical activity’ bolt-on is problematic for the EQ-5D. The ‘physical activity’ bolt-on specifies “climbing stairs, going for a walk, carrying things, gardening” as the types of activities it is referring to. Surely, these should be reflected in ‘mobility’ and ‘usual activities’. If they aren’t then I think the ‘usual activities’ descriptor, in particular, is not doing its job. What we might be seeing here, more than anything, is the flaws in the development process for the original EQ-5D descriptors. Namely, that they didn’t give adequate consideration to the people who would be filling them in. Nevertheless, it looks like a ‘breathing problems’ bolt-on could be a useful part of the EuroQol armoury.

Technology and college student mental health: challenges and opportunities. Frontiers in Psychiatry [PubMed] Published 15th April 2019

Universities in the UK and elsewhere are facing growing demand for counselling services from students. That’s probably part of the reason that our Student Mental Health Research Network was funded. Some researchers have attributed this rising demand to the use of personal computing technologies – smartphones, social media, and the like. No doubt, their use is correlated with mental health problems, certainly through time and probably between individuals. But causality is uncertain, and there are plenty of ways in which – as set out in this article – these technologies might be used in a positive way.

Most obviously, smartphones can be a platform for mental health programmes, delivered via apps. This is particularly important because there are perceived and actual barriers for students to accessing face-to-face support. This is an issue for all people with mental health problems. But the opportunity to address this issue using technology is far greater for students, who are hyper-connected. Part of the problem, the authors argue, is that there has not been a focus on implementation, and so the evidence that does exist is from studies with self-selecting samples. Yet the opportunity is great here, too, because students are often co-located with service providers and already engaged with course-related software.

Challenges remain with respect to ethics, privacy, accountability, and duty of care. In the UK, we have the benefit of being able to turn to GDPR for guidance, and universities are well-equipped to assess the suitability of off-the-shelf and bespoke services in terms of their ethical implications. The authors outline some possible ways in which universities can approach implementation and the challenges therein. Adopting these approaches will be crucial if universities are to address the current gap between the supply and demand for services.

Credits

Rachel Houten’s journal round-up for 22nd April 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

To HTA or not to HTA: identifying the factors influencing the rapid review outcome in Ireland. Value in Health [PubMed] Published 6th March 2019

National health services are constantly under pressure to provide access to new medicines as soon as marketing authorisation is granted. The NCPE in the Republic of Ireland has a rapid review process for selecting medicines that require a full health technology assessment (HTA), and the rest, approximately 45%, are able to be reimbursed without such an in-depth analysis.

Formal criteria do not exist. However, it has previously been suggested that the robustness of clinical evidence of at least equivalence; a drug that costs the same or less; an annual (or estimated) budget impact of less than €0.75 million to €1 million; and the ability of the current health systems to restrict usage are some of what is considered when making the decision.

The authors of this paper used the allocation over the past eight years to explore the factors that drive the decision to embark on a full HTA. They found, unsurprisingly, that first-in-class medicines are more likely to require an HTA as too are those with orphan status. Interestingly, the clinical area influenced the requirement for a full HTA, but the authors consider all of these factors to indicate that high-cost drugs are more likely to require a full assessment. Drug cost information is not publicly available and so the authors used the data available on the Scottish Medicine Consortium website as a surrogate for costs in Ireland. In doing so, they were able to establish a relationship between the cost per person for each drug and the likelihood of the drug having a full HTA, further supporting the idea that more expensive drugs are more likely to require HTA. On the face of it, this seems eminently sensible. However, my concern is that, in a system that is designed to deliberately measure cost per unit of health care (usually QALYs), there is the potential for lower-cost but ineffective drugs to become commonplace while more expensive medicines are subject to more rigor.

The paper provides some insight into what drives a decision to undertake a full HTA in Ireland. The NICE fast-track appraisal system operates as an opt-in system where manufacturers can ask to follow this shorter appraisal route if their drug is likely to produce an ICER of £10,000 or less. As my day job is for an Evidence Review Group (opinions my own), how things are done elsewhere – unsurprisingly – captured my attention. The desire to speed up the HTA process is obvious but the most appropriate mechanisms in which to do so are far from it. Whether or not the same decision is ultimately made is what concerns me.

NHS joint working with industry is out of public sight. BMJ [PubMed] Published 27th March 2019

This paper suggests that ‘joint working arrangements’ – a government-supported initiative between pharmaceutical companies and the NHS – are not being implemented according to guidelines on transparency. These arrangements are designed to promote collaborative research between the NHS and industry and help advance NHS provision of services.

The authors used freedom of information requests to obtain details on how many trusts were involved in joint working arrangements in 2016 and 2017. The declarations of payments made by drug companies are disclosed but the corresponding information from trusts is less readily accessible, and in some cases access to any details was prevented. Theoretically, the joint working arrangements are supposed to be void of any commercial influence on what is prescribed, but my thoughts are echoed in this paper when it asks “what’s in it for the private sector?” The sheer fact that some NHS trusts were unwilling to provide the BMJ with the information requested due to ‘commercial interest’ rings huge alarm bells.

I’m not completely cynical of these arrangements in principle, though, and the paper cites a couple of projects that involved building new facilities for age-related macular generation, which likely offer benefits to patients, and possibly much faster than could have been achieved with NHS funding alone. Some of the arrangements intend to push the implementation of national guidance, which, as a small cog in the guidance generation machine, I unashamedly (and predictably) think is a good thing.

Does it matter to us? As economists, it means that any work based on national practice and costs is likely to be unrepresentative of what actually happens. This, however, has always been the case to some extent, with variations in local service provision and the negotiation power of trusts with large volumes of patients. A national register of the arrangements would have the potential to feed into economic analysis, even if just as a statement of awareness.

Can the NHS survive without getting into bed with industry? Probably not. I think the paper does a good job of presenting the arguments on all sides and pushing for increasing availability of what is happening.

Estimating joint health condition utility values. Value in Health [PubMed] Published 22nd February 2019

I’m really interested in how this area is developing. Multi-morbidity is the norm, especially as we age. Single condition models are criticised for their lack of representation of patients in the real world. Appropriately estimating the quality of life of people with several chronic conditions, when only individual condition data are available, is incredibly difficult.

In this paper, parametric and non-parametric methods were tested on a dataset from a large primary care patient survey in the UK. The multiplicative approach was the best performing for two conditions. When more than two conditions were considered, the linear index (which incorporates additive, multiplicative, and minimum models with the use of linear regression and parameter weights derived from the underlying data) achieved the best results.

Including long-term mental health within the co-morbidities for which utility was estimated produced biased estimates. The authors discuss some possible explanations for this, including the fact that the anxiety and depression question in the EQ-5D is the only one which directly maps to an individual condition, and that mental health may have a causal effect on physical health. This is a fascinating finding, which has left me somewhat scratching my head as to how this oddity could be addressed and if separate methods of estimation will need to be used for any population with multi-morbidity including mental health conditions.

It did make me wonder if more precise EQ-5D data could be helpful to uncover the true interrelationships between joint health conditions and quality of life. The EQ-5D asks patients to think about their health state ‘today’. Although the primary care dataset used includes 16 chronic health conditions, it doesn’t, as far as I know, contain any information on the symptoms apparent on the day of quality of life assessment, which could be flaring or absent at any given time. This is a common problem with the EQ-5D and I don’t think a readily available data source of this type exists, so it’s a thought on ideals. Unsurprisingly, the more joint health conditions to be considered, the larger the error in terms of estimation from individual conditions. This may be due to the increasing likelihood of overlap in the symptoms experienced across conditions and thus a violation of the assumption that quality of life for an individual condition is independent of any other condition.

Whether the methodology remains robust for populations outside of the UK or for other measures of utility would need to be tested, and the authors are keen to highlight the need for caution before running away and using the methods verbatim. The paper does present a nice summary of the evidence to date in this area, what the authors did, and what it adds to the topic, so worth a read.

Credits