Sam Watson’s journal round-up for Monday 20th August 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

A Randomized Trial of Epinephrine in Out-of-Hospital Cardiac Arrest. New England Journal of Medicine. Published July 2018.

Adrenaline (epinephrine) is often administered to patients in cardiac arrest in order to increase blood flow and improve heart rhythm. However, there had been some concern about the potential adverse effects of using adrenaline, and a placebo controlled trial was called for. This article presents the findings of this trial. While there is little economics in this article, it is an interesting example of what I believe to be erroneous causal thinking, especially in the way it was reported in the media. For example, The Guardian‘s headline was,

Routine treatment for cardiac arrest doubles risk of brain damage – study

while The Telegraph went for the even more inflammatory

Cardiac arrest resuscitation drug has needlessly brain-damaged thousands

But what did the study itself say about their findings:

the use of epinephrine during resuscitation for out-of-hospital cardiac arrest resulted in a significantly higher rate of survival at 30 days than the use of placebo. […] although the rate of survival was slightly better, the trial did not show evidence of a between-group difference in the rate of survival with a favorable neurologic outcome. This result was explained by a higher proportion of patients who survived with severe neurologic disability in the epinephrine group.

Clearly, a slightly more nuanced view, but nevertheless it leaves room for the implication that the adrenaline is causing the neurological damage. Indeed the authors go on to say that “the use of epinephrine did not improve neurologic outcome.” But a counterfactual view of causation should lead us to ask what would have happened to those who survived with brain damage had they not been given adrenaline.

We have a competing risks set up: (A) survival with favourable neurologic outcome, (B) survival with neurologic impairment, and (C) death. The proportion of patients with outcome (A) was slightly higher in the adrenaline group (although not statistically significant so apparently no effect eyes roll), the proportion of patients with outcome (B) was a lot higher in the adrenaline group, and the proportion of patients with outcome (C) was lower in the adrenaline group. This all suggests to me that the adrenaline caused patients who would have otherwise died to mostly survive with brain damage, and a few to survive impairment free, not that adrenaline caused those who would have otherwise been fine to have brain damage. So the question in response to the above quotes is then, is death a preferable neurologic outcome to brain damage? As trite as this may sound, it is a key health economics question – how do we value these health states?

Incentivizing Safer Sexual Behavior: Evidence from a Lottery Experiment on HIV Prevention. American Economic Review: Applied Economics. [RePEcPublished July 2018. 

This article presents a randomised trial testing an interesting idea. People who are at high risk of HIV and other sexually transmitted infections (STIs) and often those who engage in riskier sexual behaviour. A basic decision theoretic conception would be that those individuals don’t consider the costs to be high enough relative to the benefits (although there is clearly some divide between this explanation and how people actually think in terms of risky sexual behaviour, much like any other seemingly irrational behaviour). Conditional cash transfers can change the balance of the decision to incentivise people to act differently, what this study looks at is using a conditional lottery with the chance of high winnings instead, since this should be more attractive still to risk-seeking individuals. While the trial was designed to reduce HIV prevalance, entry into the lottery in the treatment arm was conditional on being free of two curable STIs at each round – this enabled people who fail to be eligible again, and also allowed the entry of HIV-positive individuals whose sexual behaviour is perhaps the most important to reducing HIV transmission. The lottery arm of the trial was found to have 20% lower incidence over the study period compared to the control arm – quite impressive. However, the cost-effectiveness of the program was estimated to be $882 per HIV infection averted on the basis of lottery payments alone, and around $3,300 per case averted all in. This seems quite high to me. Despite a plethora of non-comparable outcomes in cost-effectiveness studies of HIV public health interventions other studies have reported costs per cases averted an order of magnitude lower than this. The conclusions seems to be then that the idea works well – it’s just too costly to be of much use.

Monitoring equity in universal health coverage with essential services for neglected tropical diseases: an analysis of data reported for five diseases in 123 countries over 9 years. The Lancet: Global Health. [PubMedPublished July 2018. 

Universal health coverage (UHC) is one the key parts of Sustainable Development Goal (SDG) 3, good health and well-being. The text of the SDG identifies UHC as being about access to services – but this word “access” in the context of health care is often vague and nebulous. Many people mistakenly treat access to health services as synonymous with use of health services, but having access to something is not dependent on whether you actually use it or not. Barriers to a person’s ability to use health care for a given complaint are numerous: financial cost, time cost, lack of education, language barrier, and so forth. It is therefore difficult to quantify and measure access. Hogan and co-authors proposed an index to quantify and monitor UHC across the world that was derived from a number of proxies such as women with four or more antenatal visits, children with vaccines, blood pressure, and health worker density. Their work is useful but of course flawed – these proxies all capture something different, either access, use, or health outcomes – and it is unclear that they are all sensitive to the same underlying construct. Needless to say, we should still be able to diagnose access issues from some combination of these data. This article extends the work of Hogan et al to look at neglected tropical diseases, which affect over 1.5 billion, yet which are, obviously, neglected. The paper uses ‘preventative chemotherapy coverage’ as its key measure, which is the proportion of those needed the chemotherapy who actually receive it. This is a measure of use and not access (although they should be related), for example, there may be near universal availability of the chemotherapy, but various factors on the demand side limiting use. Needless to say, the measure should still be a useful diagnostic tool and it is interesting to see how much worse countries perform on this metric for neglected tropical diseases than general health care.

 

Credits

On the commensurability of efficiency

In this week’s round-up, I highlighted a recent paper in the journal Cambridge Quarterly of Healthcare Ethics. There are some interesting ideas presented regarding the challenge of decision-making at the individual patient level, and in particular a supposed trade-off between achieving efficiency and satisfying health need.

The gist of the argument is that these two ‘values’ are incommensurable in the sense that the comparative value of two choices is ambiguous where the achievement of efficiency and need satisfaction needs to be traded. In the journal round-up, I highlighted 2 criticisms. First, I suggested that efficiency and health need satisfaction are commensurable. Second, I suggested that the paper did not adequately tackle the special nature of microlevel decision-making. The author – Anders Herlitz – was gracious enough to respond to my comments with several tweets.

Here, I’d like to put forth my reasoning on the subject (albeit with an ignorance of the background literature on incommensurability and other matters of ethics).

Consider a machine gun

A machine gun is far more efficient than a pistol, right? Well, maybe. A machine gun can shoot more bullets than a pistol over a sustained period. Likewise, a doctor who can treat 50 patients per day is more efficient than a doctor who can treat 20 patients per day.

However, the premise of this entire discussion, as established by Herlitz, is values. Herlitz introduces efficiency as a value and not as some dispassionate indicator of return on input. When we are considering values – as we necessarily are when we are discussing decision-making and more generally ‘what matters’ – we cannot take the ‘more bullets’ approach to assessing efficiency.

That’s because ‘more bullets’ is not what we mean when we talk about the value of efficiency. The production function is fundamental to our understanding of efficiency as a value. Once values are introduced, it is plain to see that in the context of war (where value is attached to a greater number of deaths) a machine gun may very well be considered more efficient. However, bearing a machine gun is far less efficient than bearing a pistol in a civilian context because we value a situation that results in fewer deaths.

In this analogy, bullets are health care and deaths are (somewhat confusingly, I admit) health improvement. Treating more people is not better because we want to provide more health care, but because we want to improve people’s health (along with some other basket of values).

Efficiency only has value with respect to the outcome in whose terms it is defined, and is therefore always commensurable with that outcome. That is, the production function is an inherent and necessary component of an efficiency to which we attach value.

I believe that Herlitz’s idea of incommensurability could be a useful one. Different outcomes may well be incommensurable in the way described in the paper. But efficiency has no place in this discussion. The incommensurability Herlitz describes in his paper seems to be a simple conflict between utilitarianism and prioritarianism, though I don’t have the wherewithal to pursue that argument so I’ll leave it there!

Microlevel efficiency trade-offs

Having said all that, I do think there could be a special decision-making challenge regarding efficiency at the microlevel. And that might partly explain Herlitz’s suggestion that efficiency is incommensurable with other outcomes.

There could be an incommensurability between values that can be measured in their achievement at the individual level (e.g. health improvement) and values that aren’t measured with individual-level outcomes (e.g. prioritisation of more severe patients). Those two outcomes are incommensurable in the way Herlitz described, but the simple fact that we tend to think about the former as an efficiency argument and the latter as an equity argument is irrelevant. We could think about both in efficiency terms (for example, treating n patients of severity x is more efficient than treating n-1 patients of severity x, or n patients of severity x-1), we just don’t. The difficulty is that this equity argument is meaningless at the individual level because it relies on information about outcomes outside the microlevel. The real challenge at the microlevel, therefore, is to acknowledge scope for efficiency in all outcomes of value. The incommensurability that matters is between microlevel and higher-level assessments of value.

As an aside, I was surprised that the Rule of Rescue did not get a mention in the paper. This is a perfect example of a situation in which arguments that tend to be made on efficiency grounds are thrown out and another value (the duty to save an immediately endangered life) takes over. One doesn’t need to think very hard about how Rule of Rescue decision-making could be framed as efficient.

In short, efficiency is never incommensurable because it is never an end in itself. If you’re concerned with being more efficient for the sake of being more efficient then you are probably not making very efficient decisions.

Credit

Thesis Thursday: Koonal Shah

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Koonal Shah who has a PhD from the University of Sheffield. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
Valuing health at the end of life
Supervisors
Aki Tsuchiya, Allan Wailoo
Repository link
http://etheses.whiterose.ac.uk/17579

What were the key questions you wanted to answer with your research?

My key research question was: Do members of the general public wish to place greater weight on a unit of health gain for end of life patients than on that for other types of patients? Or put more concisely: Is there evidence of public support for an end of life premium?

The research question was motivated by a policy introduced by NICE in 2009 [PDF], which effectively gives special weighting to health gains generated by life-extending end of life treatments. This represents an explicit departure from the Institute’s reference case position that all equal-sized health gains are of equal social value (the ‘a QALY is a QALY’ rule). NICE’s policy was justified in part by claims that it represented the preferences of society, but little evidence was available to either support or refute that premise. It was this gap in the evidence that inspired my research question.

I also sought to answer other questions, such as whether the focus on life extensions (rather than quality of life improvements) in NICE’s policy is consistent with public preferences, and whether people’s stated end of life-related preferences depend on the ways in which the preference elicitation tasks are designed, framed and presented.

Which methodologies did you use to elicit people’s preferences?

All four of my empirical studies used hypothetical choice exercises to elicit preferences from samples of the UK general public. NICE’s policy was used as the framework for the designs in each case. Three of the studies can be described as having used simple choice tasks, while one study specifically applied the discrete choice experiment methodology. The general approach was to ask survey respondents which of two hypothetical patients they thought should be treated, assuming that the health service had only enough funds to treat one of them.

In my final study, which focused on framing effects and study design considerations, I included attitudinal questions with Likert item responses alongside the hypothetical choice tasks. The rationale for including these questions was to examine the consistency of respondents’ views across two different approaches (spoiler: most people are not very consistent).

Your study included face-to-face interviews. Did these provide you with information that you weren’t able to obtain from a more general survey?

The surveys in my first two empirical studies were both administered via face-to-face interviews. In the first study, I conducted the interviews myself, while in the second study the interviews were subcontracted to a market research agency. I also conducted a small number of face-to-face interviews when pilot testing early versions of the surveys for my third and fourth studies. The piloting process was useful as it provided me with first-hand information about which aspects of the surveys did and did not work well when administered in practice. It also gave me a sense of how appropriate my questions were. The subject matter – prioritising between patients described as having terminal illnesses and poor prognoses – had the potential to be distressing for some people. My view was that I shouldn’t be including questions that I did not feel comfortable asking strangers in an interview setting.

The use of face-to-face interviews was particularly valuable in my first study as it allowed me to ask debrief questions designed to probe respondents and elicit qualitative information about the thinking behind their responses.

What factors influence people’s preferences for allocating health care resources at the end of life?

My research suggests that people’s preferences regarding the value of end of life treatments can depend on whether the treatment is life-extending or quality of life-improving. This is noteworthy because NICE’s end of life criteria accommodate life extensions but not quality of life improvements.

I also found that the amount of time that end of life patients have to ‘prepare for death’ was a consideration for a number of respondents. Some of my results suggest that observed preferences for prioritising the treatment of end of life patients may be driven by concern about how long the patients have known their prognosis rather than by concern about how long they have left to live, per se.

The wider literature suggests that the age of the end of life patients (which may act as a proxy for their role in their household or in society) may also matter. Some studies have reported evidence that respondents become less concerned about the number of remaining life years when the patients in question are relatively old. This is consistent with the ‘fair innings’ argument proposed by Alan Williams.

Given the findings of your study, are there any circumstances under which you would support an end of life premium?

My findings offer limited support for an end of life premium (though it should be noted that the wider literature is more equivocal). So it might be considered appropriate for NICE to abandon its end of life policy on the grounds that the population health losses that arise due to the policy are not justified by the evidence on societal preferences. However, there may be arguments for retaining some form of end of life weighting irrespective of societal preferences. For example, if the standard QALY approach systematically underestimates the benefits of end of life treatments, it may be appropriate to correct for this (though whether this is actually the case would itself need investigating).

Many studies reporting that people wish to prioritise the treatment of the severely ill have described severity in terms of quality of life rather than life expectancy. And some of my results suggest that support for an end of life premium would be stronger if it applied to quality of life-improving treatments. This suggests that weighting QALYs in accordance with continuous variables capturing quality of life as well as life expectancy may be more consistent with public preferences than the current practice of applying binary cut-offs based only on life expectancy information, and would address some of the criticisms of the arbitrariness of NICE’s policy.