Chris Sampson’s journal round-up for 15th October 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Reliability and validity of the contingent valuation method for estimating willingness to pay: a case of in vitro fertilisation. Applied Health Economics and Health Policy [PubMed] Published 13th October 2018

In vitro fertilisation (IVF) is a challenge for standard models of valuation in health economics. Mostly, that’s because, despite it falling within the scope of health care, and despite infertility being a health problem, many of the benefits of IVF can’t be considered health-specific. QALYs can’t really do the job, so there’s arguably a role for cost-benefit analysis, and for using stated preference methods to determine the value of IVF. This study adds to an existing literature studying willingness to pay for IVF, but differs in that it tries to identify willingness to pay (WTP) from the general population. This study is set in Australia, where IVF is part-funded by universal health insurance, so asking the public is arguably the right thing to do.

Three contingent valuation surveys were conducted online with 1,870 people from the general public. The first survey used a starting point bid of $10,000, and then, 10 months later, two more surveys were conducted with starting point bids of $4,000 and $10,000. Each included questions for a 10%, 20%, and 50% success rate. Respondents were asked to adopt an ex-post perspective, assuming that they were infertile and could conceive by IVF. Individuals could respond to starting bids with ‘yes’, ‘no’, ‘not sure’, or ‘I am not willing to pay anything’. WTP for one IVF cycle with a 20% success rate ranged from $6,353 in the $4,000 survey to $11,750 in the first $10,000 survey. WTP for a year of treatment ranged from $18,433 to $28,117. The method was reliable insofar as there were no differences between the first and second $10,000 surveys. WTP values corresponded to the probability of success, providing support for the internal construct validity of the survey. However, the big difference between values derived using the alternative starting point bids indicates a strong anchoring bias. The authors also tested the external criterion validity by comparing the number of respondents willing to pay more than $4,000 for a cycle with a 20% success rate (roughly equivalent to the out of pocket cost in Australia) with the number of people who actually choose to pay for IVF in Australia. Around 63% of respondents were willing to pay at that price, which is close to the estimated 60% in Australia.

This study provides some support for the use of contingent valuation methods in the context of IVF, and for its use in general population samples. But the anchoring effect is worrying and justifies further research to identify appropriate methods to counteract this bias. The exclusion of the “not sure” and “I will not pay anything” responses from the analysis – as ‘non-demanders’ – arguably undermines the ‘societal valuation’ aspect of the estimates.

Pharmaceutical expenditure and gross domestic product: evidence of simultaneous effects using a two‐step instrumental variables strategy. Health Economics [PubMed] Published 10th October 2018

The question of how governments determine spending on medicines is pertinent in the UK right now, as the Pharmaceutical Price Regulation Scheme approaches its renewal date. The current agreement includes a cap on pharmaceutical expenditure. It should go without saying that GDP ought to have some influence on how much public spending is dedicated to medicines. But, when medicines expenditure might also influence GDP, the actual relationship is difficult to estimate. In this paper, the authors seek to identify both effects: the income elasticity of government spending on pharmaceuticals and the effect of that spending on income.

The authors use a variety of data sources from the World Health Organization, World Bank, and International Monetary Fund to construct an unbalanced panel for 136 countries from 1995 to 2006. To get around the challenge of two-way causality, the authors implement a two-step instrumental variable approach. In the first step of the procedure, a model estimates the impact of GDP per capita on government spending on pharmaceuticals. International tourist receipts are used as an instrument that is expected to correlate strongly with GDP per capita, but which is expected to be unrelated to medicines expenditure (except through its correlation with GDP). The model attempts to control for health care expenditure, life expectancy, and other important country-specific variables. In the second step, a reverse causality model is used to assess the impact of pharmaceutical expenditure on GDP per capita, with pharmaceutical expenditure adjusted to partial-out the response to GDP estimated in the first step.

The headline average results are that GDP increases pharmaceutical expenditure and that pharmaceutical expenditure reduces GDP. A 1% increase in GDP per capita increases public pharmaceutical expenditure per capita by 1.4%, suggesting that pharmaceuticals are a luxury good. A 1% increase in public pharmaceutical expenditure is associated with a 0.09% decrease in GDP per capita. But the results are more nuanced than that. The authors outline various sources of heterogeneity. The positive effect of GDP on pharmaceutical expenditure only holds for high-income countries and the negative effect of pharmaceutical expenditure on GDP only holds for low-income countries. Quantile regressions show that income elasticity decreases for higher quantiles of expenditure. GDP only influences pharmaceutical spending in countries classified as ‘free’ on the index of Economic Freedom of the World, and pharmaceutical expenditure only has a negative impact on GDP in countries that are ‘not free’.

I’ve never come across this kind of two-step approach before, so I’m still trying to get my head around whether the methods and the data are adequate. But a series of robustness checks provide some reassurance. In particular, an analysis of intertemporal effects using lagged GDP and lagged pharmaceutical expenditure demonstrates the robustness of the main findings. Arguably, the findings of this study are more important for policymaking in low- and middle-income countries, where pharmaceutical expenditures might have important consequences for GDP. In high-income (and ‘free’) economies that spend a lot on medicines, like the UK, there is probably less at stake. This could be because of effective price regulation and monitoring, and better adherence, ensuring that pharmaceutical expenditure is not wasteful.

Parental health spillover in cost-effectiveness analysis: evidence from self-harming adolescents in England. PharmacoEconomics [PubMed] [RePEc] Published 8th October 2018

Any intervention has the potential for spillover effects, whereby people other than the recipient of care are positively or negatively affected by the consequences of the intervention. Where a child is the recipient of care, it stands to reason that any intervention could affect the well-being of the parents and that these impacts should be considered in economic evaluation. But how should parental spillovers be incorporated? Are parental utilities additive to that of the child patient? Or should a multiplier effect be used with reference to the effect of an intervention on the child’s utility?

The study reports on a trial-based economic evaluation of family therapy for self-harming adolescents aged 11-17. Data collection included EQ-5D-3L for the adolescents and HUI2 for the main caregiver (86% mothers) at baseline, 6-month follow-up, and 12-month follow-up, collected from 731 patient-parent pairs. The authors outline six alternative methods for including parental health spillovers: i) relative health spillover, ii) relative health spillover per treatment arm, iii) absolute health spillover, iv) absolute global health spillover per treatment arm, v) additive accrued health benefits, and vi) household equivalence scales. These differ according to whether parental utility is counted as depending on adolescent’s utility, treatment allocation, the primary outcome of the study, or some combination thereof. But the authors’ primary focus (and the main contribution of this study) is the equivalence scale option. This involves adding together the spillover effects for other members of the household and using alternative weightings depending on the importance of parental utility compared with adolescent utility.

Using Tobit models, controlling for a variety of factors, the authors demonstrate that parental utility is associated with adolescent utility. Then, economic evaluations are conducted using each of the alternative spillover accounting methods. The base case of including only adolescents’ utility delivers an ICER of around £40,453. Employing the alternative methods gives quite different results, with the intervention dominated in two of the cases and an ICER below £30,000 per QALY in others. For the equivalence scale approach, the authors employ several elasticities for spillover utility, ranging from 0 (where parental utility is of equivalent value to adolescent utility and therefore additive) to 1 (where the average health spillover per household member is estimated for each patient). The ICER estimates using the equivalence scale approach ranged from £27,166 to £32,504. Higher elasticity implied lower cumulated QALYs.

The paper’s contribution is methodological, and I wouldn’t read too much into the magnitude of the results. For starters, the use of HUI2 (a measure for children) in adults and the use of EQ-5D-3L (a measure for adults) in the children is somewhat confusing. The authors argue that health gains should only be aggregated at the household level if the QALY gain for the patient is greater or equal to zero, because the purpose of treatment is to benefit the adolescents, not the parents. And they argue in favour of using an equivalence scale approach. By requiring an explicit judgement to set the elasticity within the estimation, the method provides a useful and transparent approach to including parental spillovers.

Credits

Sam Watson’s journal round-up for 15th January 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Cost-effectiveness of publicly funded treatment of opioid use disorder in California. Annals of Internal Medicine [PubMed] Published 2nd January 2018

Deaths from opiate overdose have soared in the United States in recent years. In 2016, 64,000 people died this way, up from 16,000 in 2010 and 4,000 in 1999. The causes of public health crises like this are multifaceted, but we can identify two key issues that have contributed more than any other. Firstly, medical practitioners have been prescribing opiates irresponsibly for years. For the last ten years, well over 200,000,000 opiate prescriptions were issued per year in the US – enough for seven in every ten people. Once prescribed, opiate use is often not well managed. Prescriptions can be stopped abruptly, for example, leaving people with unexpected withdrawal syndromes and rebound pain. It is estimated that 75% of heroin users in the US began by using legal, prescription opiates. Secondly, drug suppliers have started cutting heroin with its far stronger but cheaper cousin, fentanyl. Given fentanyl’s strength, only a tiny amount is required to achieve the same effects as heroin, but the lack of pharmaceutical knowledge and equipment means it is often not measured or mixed appropriately into what is sold as ‘heroin’. There are two clear routes to alleviating the epidemic of opiate overdose: prevention, by ensuring responsible medical use of opiates, and ‘cure’, either by ensuring the quality and strength of heroin, or providing a means to stop opiate use. The former ‘cure’ is politically infeasible so it falls on the latter to help those already habitually using opiates. However, the availability of opiate treatment programs, such as opiate agonist treatment (OAT), is lacklustre in the US. OAT provides non-narcotic opiates, such as methadone or buprenorphine, to prevent withdrawal syndromes in users, from which they can slowly be weaned. This article looks at the cost-effectiveness of providing OAT for all persons seeking treatment for opiate use in California for an unlimited period versus standard care, which only provides OAT to those who have failed supervised withdrawal twice, and only for 21 days. The paper adopts a previously developed semi-Markov cohort model that includes states for treatment, relapse, incarceration, and abstinence. Transition probabilities for the new OAT treatment were determined from treatment data for current OAT patients (as far as I understand it). Although this does raise the question about the generalisability of this population to the whole population of opiate users – given the need to have already been through two supervised withdrawals, this population may have a greater motivation to quit, for example. In any case, the article estimates that the OAT program would be cost-saving, through reductions in crime and incarceration, and improve population health, by reducing the risk of death. Taken at face value these results seem highly plausible. But, as we’ve discussed before, drug policy rarely seems to be evidence-based.

The impact of aid on health outcomes in Uganda. Health Economics [PubMed] Published 22nd December 2017

Examining the response of population health outcomes to changes in health care expenditure has been the subject of a large and growing number of studies. One reason is to estimate a supply-side cost-effectiveness threshold: the health returns the health service achieves in response to budget expansions or contractions. Similarly, we might want to know the returns to particular types of health care expenditure. For example, there remains a debate about the effectiveness of aid spending in low and middle-income country (LMIC) settings. Aid spending may fail to be effective for reasons such as resource leakage, failure to target the right population, poor design and implementation, and crowding out of other public sector investment. Looking at these questions at an aggregate level can be tricky; the link between expenditure or expenditure decisions and health outcomes is long and causality flows in multiple directions. Effects are likely to therefore be small and noisy and require strong theoretical foundations to interpret. This article takes a different, and innovative, approach to looking at this question. In essence, the analysis boils down to a longitudinal comparison of those who live near large, aid funded health projects with those who don’t. The expectation is that the benefit of any aid spending will be felt most acutely by those who live nearest to actual health care facilities that come about as a result of it. Indeed, this is shown by the results – proximity to an aid project reduced disease prevalence and work days lost to ill health with greater effects observed closer to the project. However, one way of considering the ‘usefulness’ of this evidence is how it can be used to improve policymaking. One way is in understanding the returns to investment or over what area these projects have an impact. The latter is covered in the paper to some extent, but the former is hard to infer. A useful next step may be to try to quantify what kind of benefit aid dollars produce and its heterogeneity thereof.

The impact of social expenditure on health inequalities in Europe. Social Science & Medicine Published 11th January 2018

Let us consider for a moment how we might explore empirically whether social expenditure (e.g. unemployment support, child support, housing support, etc) affects health inequalities. First, we establish a measure of health inequality. We need a proxy measure of health – this study uses self-rated health and self-rated difficulty in daily living – and then compare these outcomes along some relevant measure of socioeconomic status (SES) – in this study they use level of education and a compound measure of occupation, income, and education (the ISEI). So far, so good. Data on levels of social expenditure are available in Europe and are used here, but oddly these data are converted to a percentage of GDP. The trouble with doing this is that this variable can change if social expenditure changes or if GDP changes. During the financial crisis, for example, social expenditure shot up as a proportion of GDP, which likely had very different effects on health and inequality than when social expenditure increased as a proportion of GDP due to a policy change under the Labour government. This variable also likely has little relationship to the level of support received per eligible person. Anyway, at the crudest level, we can then consider how the relationship between SES and health is affected by social spending. A more nuanced approach might consider who the recipients of social expenditure are and how they stand on our measure of SES, but I digress. In the article, the baseline category for education is those with only primary education or less, which seems like an odd category to compare to since in Europe I would imagine this is a very small proportion of people given compulsory schooling ages unless, of course, they are children. But including children in the sample would be an odd choice here since they don’t personally receive social assistance and are difficult to compare to adults. However, there are no descriptive statistics in the paper so we don’t know and no comparisons are made between other groups. Indeed, the estimates of the intercepts in the models are very noisy and variable for no obvious reason other than perhaps the reference group is very small. Despite the problems outlined so far though, there is a potentially more serious one. The article uses a logistic regression model, which is perfectly justifiable given the binary or ordinal nature of the outcomes. However, the authors justify the conclusion that “Results show that health inequalities measured by education are lower in countries where social expenditure is higher” by demonstrating that the odds ratio for reporting a poor health outcome in the groups with greater than primary education, compared to primary education or less, is smaller in magnitude when social expenditure as a proportion of GDP is higher. But the conclusion does not follow from the premise. It is entirely possible for these odds ratios to change without any change in the variance of the underlying distribution of health, the relative ordering of people, or the absolute difference in health between categories, simply by shifting the whole distribution up or down. For example, if the proportions of people in two groups reporting a negative outcome are 0.3 and 0.4, which then change to 0.2 and 0.3 respectively, then the odds ratio comparing the two groups changes from 0.64 to 0.58. The difference between them remains 0.1. No calculations are made regarding absolute effects in the paper though. GDP is also shown to have a positive effect on health outcomes. All that might have been shown is that the relative difference in health outcomes between those with primary education or less and others changes as GDP changes because everyone is getting healthier. The question of the article is interesting, it’s a shame about the execution.

Credits

 

Paul Mitchell’s journal round-up for 17th July 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

What goes wrong with the allocation of domestic and international resources for HIV? Health Economics [PubMedPublished 7th July 2017

Investment in foreign aid is coming under considered scrutiny as a number of leading western economies re-evaluate their role in the world and their obligations to countries with developing economies. Therefore, it is important for those who believe in the benefits of such investments to show that they are being done efficiently. This paper looks at how funding for HIV is distributed both domestically and internationally across countries, using multivariate regression analysis with instruments to control for reverse causality between financing and HIV prevalence, and domestic and international financing. The author is also concerned about countries free riding on international aid and estimates how countries ought to be allocating national resources to HIV using quintile regression to estimate what countries have fiscal space for expanding their current spending domestically. The results of the study show that domestic expenditure relative to GDP per capita is almost unit elastic, whereas it is inelastic with regards to HIV prevalence. Government effectiveness (as defined by the World Bank indices) has a statistically significant effect on domestic expenditure, although it is nonlinear, with gains more likely when moving up from a lower level of government effectiveness. International expenditure is inversely related to GDP per capita and HIV prevalence, and positively with government effectiveness, albeit the regression models for international expenditure had poor explanatory power. Countries with higher GDP per capita tended to dedicate more money towards HIV, however, the author reckons there is $3bn of fiscal space in countries such as South Africa and Nigeria to contribute more to HIV, freeing up international aid for other countries such as Cameroon, Ghana, Thailand, Pakistan and Columbia. The author is concerned that countries with higher GDP should be able to allocate more to HIV, but feels there are improvements to be made in how international aid is distributed too. Although there is plenty of food for thought in this paper, I was left wondering how this analysis can help in aiding a better allocation of resources. The normative model of what funding for HIV ought to be is from the viewpoint that this is the sole objective of countries of allocating resources, which is clearly contestable (the author even casts doubt as to whether this is true for international funding of HIV). Perhaps the other demands faced by national governments (e.g. funding for other diseases, education etc.) can be better reflected in future research in this area.

Can pay-for-performance to primary care providers stimulate appropriate use of antibiotics? Health Economics [PubMed] [RePEcPublished 7th July 2017

Antibiotic resistance is one of the largest challenges facing global health this century. This study from Sweden looks to see whether pay for performance (P4P) can have a role in the prescription practices of GPs when it comes to treating children with respiratory tract infection. P4P was introduced on a staggered basis across a number of regions in Sweden to incentivise primary care to use narrow spectrum penicillin as a first line treatment, as it is said to have a smaller impact on resistance. Taking advantage of data from the Swedish Prescribed Drug Register between 2006-2013, the authors conducted a difference in difference regression analysis to show the effect P4P had on the share of the incentivised antibiotic. They find a positive main effect of P4P on drug prescribing of 1.1 percentage points, that is also statistically significant. Of interest, the P4P in Sweden under analysis here was not directly linked to salaries of GPs but the health care centre. Although there are a number of limitations with the study that the authors clearly highlight in the discussion, it is a good example of how to make the most of routinely available data. It also highlights that although the share of the less resistant antibiotic went up, the national picture of usage of antibiotics did not reduce in line with a national policy aimed at doing so during the same time period. Even though Sweden is reported to be one of the lower users of antibiotics in Europe, it highlights the need to carefully think through how targets are achieved and where incentives might help in some areas to meet such targets.

Econometric modelling of multiple self-reports of health states: the switch from EQ-5D-3L to EQ-5D-5L in evaluating drug therapies for rheumatoid arthritis. Journal of Health Economics Published 4th July 2017

The EQ-5D is the most frequently used health state descriptive system for the generation of utility values for quality-adjusted life years (QALYs) in economic evaluation. To improve sensitivity and reduce floor and ceiling effects, the EuroQol team developed a five level version (5L) compared to the previous three level (3L) version. This study adds to recent evidence in this area of the unforeseen consequences of making this change to the descriptive system and also the valuation system used for the 5L. Using data from the National Data Bank for Rheumatic Diseases, where both 3L and 5L versions were completed simultaneously alongside other clinical measures, the authors construct a mapping between both versions of EQ-5D, informed by the response levels and the valuation systems that have been developed in the UK for the measures. They also test their mapping estimates on a previous economic evaluation for rheumatoid arthritis treatments. The descriptive results show that although there is a high correlation between both versions, and the 5L version achieves its aim of greater sensitivity, there is a systematic difference in utility scores generated using both versions, with an average 87% of the score of the 3L recorded compared to the 5L. Not only are there differences highlighted between value sets for the 3L and 5L but also the responses to dimensions across measures, where the mobility and pain dimensions do not align as one would expect. The new mapping developed in this paper highlights some of the issues with previous mapping methods used in practice, including the assumption of independence of dimension levels from one another that was used while the new valuation for the 5L was being developed. Although the case study they use to demonstrate the effect of using the different approaches in practice did not result in a different cost-effectiveness result, the study does manage to highlight that the assumption of 3L and 5L versions being substitutes for one another, both in terms of descriptive systems and value sets, does not hold. Although the authors are keen to highlight the benefits of their new mapping that produces a smooth distribution from actual to predicted 5L, decision makers will need to be clear about what descriptive system they now want for the generation of QALYs, given the discrepancies between 3L and 5L versions of EQ-5D, so that consistent results are obtained from economic evaluations.

Credits