Alastair Canaway’s journal round-up for 28th May 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Information, education, and health behaviours: evidence from the MMR vaccine autism controversy. Health Economics [PubMed] Published 2nd May 2018

In 1998, Andrew Wakefield published (in the Lancet) his infamous and later retracted research purportedly linking the measles-mumps-rubella (MMR) vaccine and autism. Despite the thorough debunking and exposure of academic skulduggery, a noxious cloud of misinformation remained in the public mind, particularly in the US. This study examined several facets of the MMR fake news including: what impact did this have on vaccine uptake in the US (both MMR and other vaccines); how did state level variation in media coverage impact uptake; and what role did education play in subsequent decisions about whether to vaccinate or not. This study harnessed the National Immunization Survey from 1995 to 2006 to answer these questions. This is a yearly dataset of over 200,000 children aged between 19 to 35 months with detailed information on not just immunisation, but also maternal education, income and other sociodemographics. The NewsLibrary database was used to identify stories published in national and state media relating to vaccines and autism. Various regression methods were implemented to examine these data. The paper found that, unsurprisingly, for the year following the Wakefield publication the MMR vaccine take-up declined by between 1.1%-1.5% (notably less than 3% in the UK), likewise this fall in take-up spilled over into other vaccines take-up. The most interesting finding related to education: MMR take-up for children of college-educated mothers declined significantly compared to those without a degree. This can be explained by the education gradient where more-educated individuals absorb and respond to health information more quickly. However, in the US, this continued for many years beyond 2003 despite proliferation of research refuting the autism-MMR link. This contrasts to the UK where educational link closed soon after the findings were refuted, that is, in the UK, the educated responded to the new information refuting the MMR-Autism link. In the US, despite the research being debunked, MMR uptake was lower in the children of those with higher levels of education for many more years. The author speculates that this contrast to the UK may be a result of the media influencing parents’ decisions. Whilst the media buzz in the UK peaked in 2002, it had largely subsided by 2003. In the US however, the media attention was constant, if not increasing till 2006, and so this may have been the reason the link remained within the US. So, we have Andrew Wakefield and arguably fearmongering media to blame for causing a long-term reduction in MMR take-up in the US. Overall, an interesting study leaning on multiple datasets that could be of interest for those working with big data.

Can social care needs and well-being be explained by the EQ-5D? Analysis of the Health Survey for England. Value in Health Published 23rd May 2018

There is increasing discussion about integrating health and social care to provide a more integrated approach to fulfilling health and social care needs. This creates challenges for health economists and decision makers when allocating resources, particularly when comparing benefits from different sectors. NICE itself recognises that the EQ-5D may be inappropriate in some situations. With the likes of ASCOT, ICECAP and WEMWBS frequenting the health economics world this isn’t an unknown issue. To better understand the relationship between health and social care measures, this EuroQol Foundation funded study examined the relationship between social care needs as measured by the Barthel Index, well-being measured using WEMWBS and also the GGH-12, and the EQ-5D as the measure of health. Data was obtained through the Health Survey for England (HSE) and contained 3354 individuals aged over 65 years. Unsurprisingly the authors found that higher health and wellbeing scores were associated with an increased probability of no social care needs. Those who are healthier or at higher levels of wellbeing are less likely to need social care. Of all the instruments, it was the self-care and the pain/discomfort dimensions of the EQ-5D that were most strongly associated with the need for social care. No GHQ-12 dimensions were statistically significant, and for the WEMWBS only the ‘been feeling useful’ and ‘had energy to spare’ were statistically significantly associated with social care need. The authors also investigated various other associations between the measures with many unsurprising findings e.g. EQ-5D anxiety/depression dimension was negatively associated with wellbeing as measured using the GHQ-12. Although the findings are favourable for the EQ-5D in terms of it capturing to some extent social care needs, there is clearly still a gap whereby some outcomes are not necessarily captured. Considering this, the authors suggest that it might be appropriate to strap on an extra dimension to the EQ-5D (known as a ‘bolt on’) to better capture important ‘other’ dimensions, for example, to capture dignity or any other important social care outcomes. Of course, a significant limitation with this paper relates to the measures available in the data. Measures such as ASCOT and ICECAP have been developed and operationalised for economic evaluation with social care in mind, and a comparison against these would have been more informative.

The health benefits of a targeted cash transfer: the UK Winter Fuel Payment. Health Economics [PubMed] [RePEc] Published 9th May 2018

In the UK, each winter is accompanied by an increase in mortality, often known as ‘excess winter mortality’ (EWM). To combat this, the UK introduced the Winter Fuel Payment (WFP), the purpose of the WFP is an unconditional cash transfer to households containing an older person (those most vulnerable to EWM) above the female state pension age with the intent for this to used to help the elderly deal with the cost of keeping their dwelling warm. The purpose of this paper was to examine whether the WFP policy has improved the health of elderly people. The authors use the Health Surveys for England (HSE), the Scottish health Survey (SHeS) and the English Longitudinal Study of Ageing (ELSA) and employ a regression discontinuity design to estimate causal effects of the WFP. To measure impact (benefit) they focus on circulatory and respiratory illness as measured by: self-reports of chest infection, nurse measured hypertension, and two blood biomarkers for infection and inflammation. The authors found that for those living in a household receiving the payment there was a 6% point reduction (p<0.01) in the incidence of high levels of serum fibrinogen (biomarker) which are considered to be a marker of current infection and are associated with chronic pulmonary disease. For the other health outcomes, although positive, the estimated effects were less robust and not statistically significant. The authors investigated the impact of increasing the age of eligibility for the WFP (in line with the increase of women’s pension age). Their findings suggest there may be some health cost associated with the increase in age of eligibility for WFP. To surmise, the paper highlights that there may be some health benefits from the receipt of the WFP. What it doesn’t however consider is opportunity cost. With WFP costing about £2 billion per year, as a health economist, I can’t help but wonder if the money could have been better spent through other avenues.

Credits

 

Brent Gibbons’s journal round-up for 9th April 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

The effect of Medicaid on management of depression: evidence from the Oregon Health Insurance Experiment. The Milbank Quarterly [PubMed] Published 5th March 2018

For the first journal article of this week’s AHE round-up, I selected a follow-up study on the Oregon health insurance experiment. The Oregon Health Insurance Experiment (OHIE) used a lottery system to expand Medicaid to low-income uninsured adults (and their associated households) who were previously ineligible for coverage. Those interested in being part of the study had to sign up. Individuals were then randomly selected through the lottery, after which individuals needed to take further action to complete enrollment in Medicaid, which included showing that enrollment criteria were satisfied (e.g. income below 100% of poverty line). These details are important because many who were selected for the lottery did not complete enrollment in Medicaid, though being selected through the lottery was associated with a 25 percentage point increase in the probability of having insurance (which the authors confirm was overwhelmingly due to Medicaid and not other insurance). More details on the study and data are publicly available. The OHIE is a seminal study in that it allows researchers to study the effects of having insurance in an experimental design – albeit in the U.S. health care system’s context. The other study that comes to mind is of course the famous RAND health insurance experiment that allowed researchers to study the effects of different levels of health insurance coverage. For the OHIE, the authors importantly point out that it is not necessarily obvious what the impact of having insurance is. While we would expect increases in health care utilization, it is possible that increases in primary care utilization could result in offsetting reductions in other settings (e.g. hospital or emergency department use). Also, while we would expect increases in health as a result of increases in health care use, it is possible that by reducing adverse financial consequences (e.g. of unhealthy behavior), health insurance could discourage investments in health. Medicaid has also been criticized by some as not very good insurance – though there are strong arguments to the contrary. First-year outcomes were detailed in another paper. These included increased health care utilization (across all settings), decreased out-of-pocket medical expenditures, decreased medical debt, improvements in self-reported physical and mental health, and decreased probability of screening positive for depression. In the follow-up paper on management of depression, the authors further explore the causal effect and causal pathway of having Medicaid on depression diagnosis, treatment, and symptoms. Outcomes of interest are the effect of having Medicaid on the prevalence of undiagnosed and untreated depression, the use of depression treatments including medication, and on self-reported depressive symptoms. Where possible, outcomes are examined for those with a prior depression diagnosis and those without. In order to examine the effect of Medicaid insurance (vs. being uninsured), the authors needed to control for the selection bias introduced from uncompleted enrollment into Medicaid. Instrumental variable 2SLS was used with lottery selection as the sole instrument. Local average treatment effects were reported with clustered standard errors on the household. The effect of Medicaid on the management of depression was overwhelmingly positive. For those with no prior depression diagnosis, it increased the chance of receiving a diagnosis and decreased the prevalence of undiagnosed depression (those who scored high on study survey depression instrument but with no official diagnosis). As far as treatment, Medicaid reduced the share of the population with untreated depression, virtually eliminating untreated depression among those with pre-lottery depression. There was a large reduction in unmet need for mental health treatment and an increased share who received specific mental health treatments (i.e. prescription drugs and talk therapy). For self-reported symptoms, Medicaid reduced the overall rate screened for depression symptoms in the post-lottery period. All effects were relatively strong in magnitude, giving an overall convincing picture that Medicaid increased access to treatment, which improved depression symptoms. The biggest limitation of this study is its generalizability. Much of the results were focused on the city of Portland, which may not represent more rural parts of the state. More importantly, this was limited to the state of Oregon for low-income adults who not only expressed interest in signing up, but who were able to follow through to complete enrollment. Other limitations were that the study only looked at the first two years of outcomes and that there was limited information on the types of treatments received.

Tobacco regulation and cost-benefit analysis: how should we value foregone consumer surplus? American Journal of Health Economics [PubMed] [RePEcPublished 23rd January 2018

This second article addresses a very interesting theoretical question in cost-benefit analysis, that has emerged in the context of tobacco regulation. The general question is how should foregone consumer surplus, in the form of reduced smoking, be valued? The history of this particular question in the context of recent FDA efforts to regulate smoking is quite fascinating. I highly recommend reading the article just for this background. In brief, the FDA issued proposed regulations to implement graphic warning labels on cigarettes in 2010 and more recently proposed that cigars and e-cigarettes should also be subject to FDA regulation. In both cases, an economic impact analysis was required and debates ensued on if, and how, foregone consumer surplus should be valued. Economists on both sides weighed-in, some arguing that the FDA should not consider foregone consumer surplus because smoking behavior is irrational, others arguing consumers are perfectly rational and informed and the full consumer surplus should be valued, and still others arguing that some consumer surplus should be counted but there is likely bounded rationality and that it is methodologically unclear how to perform a valuation in such a case. The authors helpfully break down the debate into the following questions: 1) if we assume consumers are fully informed and rational, what is the right approach? 2) are consumers fully informed and rational? and 3) if consumers are not fully informed and rational, what is the right approach? The reason the first question is important is that the FDA was conducting the economic impact analysis by examining health gains and foregone consumer surplus separately. However, if consumers are perfectly rational and informed, their preferences already account for health impacts, meaning that only changes in consumer surplus should be counted. On the second question, the authors explore the literature on smoking behavior to understand “whether consumers are rational in the sense of reflecting stable preferences that fully take into account the available information on current and expected future consequences of current choices.” In general, the literature shows that consumers are pretty well aware of the risks, though they may underestimate the difficulty of quitting. On whether consumers are rational is a much harder question. The authors explore different rational addiction models, including quasi-rational addiction models that take into account more recent developments in behavioral economics, but declare that the literature at this point provides no clear answer and that no empirical test exists to distinguish between rational and quasi-rational models. Without answering whether consumers are fully informed and rational, the authors suggest that welfare analysis – even in the face of bounded rationality – can still use a similar valuation approach to consumer surplus as was recommended for when consumers are fully informed and rational. A series of simple supply and demand curves are presented where there is a biased demand curve (demand under bounded rationality) and an unbiased demand curve (demand where fully informed and rational) and different regulations are illustrated. The implication is that rather than trying to estimate health gains as a result of regulations, what is needed is to understand the amount of demand bias as result of bounded rationality. Foregone consumer surplus can then be appropriately measured. Of course, more research is needed to estimate if, and how much, ‘demand bias’ or bounded rationality exists. The framework of the paper is extremely useful and it pushes health economists to consider advances that have been made in environmental economics to account for bounded rationality in cost-benefit analysis.

2SLS versus 2SRI: appropriate methods for rare outcomes and/or rare exposures. Health Economics [PubMed] Published 26th March 2018

This third paper I will touch on only briefly, but I wanted to include it as it addresses an important methodological topic. The paper explores several alternative instrumental variable estimation techniques for situations when the treatment (exposure) variable is binary, compared to the common 2SLS (two-stage least squares) estimation technique which was developed for a linear setting with continuous endogenous treatments and outcome measures. A more flexible approach, referred to as 2SRI (two-stage residual inclusion) allows for non-linear estimation methods in the first stage (and second stage), including logit or probit estimation methods. As the title suggests, these alternative estimation methods may be particularly useful when treatment (exposure) and/or outcomes are rare (e.g below 5%). Monte Carlo simulations are performed on what the authors term ‘the simplest case’ where the outcome, treatment, and instrument are binary variables and a range of results are considered as the treatment and/or outcome become rarer. Model bias and consistency are assessed in the ability to produce average treatment effects (ATEs) and local average treatment effects (LATEs), comparing the 2SLS, several forms of probit-probit 2SRI models, and a bivariate probit model. Results are that the 2SLS produced biased estimates of the ATE, especially as treatment and outcomes become rarer. The 2SRI models had substantially higher bias than the bivariate probit in producing ATEs (though the bivariate probit requires the assumption of bivariate normality). For LATE, 2SLS always produces consistent estimates, even if the linear probability model produces out of range predictions. Estimates for 2SRI models and the bivariate probit model were biased in producing LATEs. An empirical example was also tested with data on the impact of long-term care insurance on long-term care use. Conclusions are that 2SRI models do not dependably produce unbiased estimates of ATEs. Among the 2SRI models though, there were varying levels of bias and the 2SRI model with generalized residuals appeared to produce the least ATE bias. For more rare treatments and outcomes, the 2SRI model with Anscombe residuals generated the least ATE bias. Results were similar to another simulation study by Chapman and Brooks. The study enhances our understanding of how different instrumental variable estimation methods may function under conditions where treatment and outcome variables have nonlinear distributions and where those same treatments and outcomes are rare. In general, the authors give a cautionary note to say that there is not one perfect estimation method in these types of conditions and that researchers should be aware of the potential pitfalls of different estimation methods.

Credits

 

Chris Sampson’s journal round-up for 19th March 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Using HTA and guideline development as a tool for research priority setting the NICE way: reducing research waste by identifying the right research to fund. BMJ Open [PubMed] Published 8th March 2018

As well as the cost-effectiveness of health care, economists are increasingly concerned with the cost-effectiveness of health research. This makes sense, given that both are usually publicly funded and so spending on one (in principle) limits spending on the other. NICE exists in part to prevent waste in the provision of health care – seeking to maximise benefit. In this paper, the authors (all current or ex-employees of NICE) consider the extent to which NICE processes are also be used to prevent waste in health research. The study focuses on the processes underlying NICE guideline development and HTA, and the work by NICE’s Science Policy and Research (SP&R) programme. Through systematic review and (sometimes) economic modelling, NICE guidelines identify research needs, and NICE works with the National Institute for Health Research to get their recommended research commissioned, with some research fast-tracked as ‘NICE Key Priorities’. Sometimes, it’s also necessary to prioritise research into methodological development, and NICE have conducted reviews to address this, with the Internal Research Advisory Group established to ensure that methodological research is commissioned. The paper also highlights the roles of other groups such as the Decision Support Unit, Technical Support Unit and External Assessment Centres. This paper is useful for two reasons. First, it gives a clear and concise explanation of NICE’s processes with respect to research prioritisation, and maps out the working groups involved. This will provide researchers with an understanding of how their work fits into this process. Second, the paper highlights NICE’s current research priorities and provides insight into how these develop. This could be helpful to researchers looking to develop new ideas and proposals that will align with NICE’s priorities.

The impact of the minimum wage on health. International Journal of Health Economics and Management [PubMed] Published 7th March 2018

The minimum wage is one of those policies that is so far-reaching, and with such ambiguous implications for different people, that research into its impact can deliver dramatically different conclusions. This study uses American data and takes advantage of the fact that different states have different minimum wage levels. The authors try to look at a broad range of mechanisms by which minimum wage can affect health. A major focus is on risky health behaviours. The study uses data from the Behavioral Risk Factor Surveillance System, which includes around 300,000 respondents per year across all states. Relevant variables from these data characterise smoking, drinking, and fruit and vegetable consumption, as well as obesity. There are also indicators of health care access and self-reported health. The authors cut their sample to include 21-64-year-olds with no more than a high school degree. Difference-in-differences are estimated by OLS according to individual states’ minimum wage changes. As is often the case for minimum wage studies, the authors find several non-significant effects: smoking and drinking don’t seem to be affected. Similarly, there isn’t much of an impact on health care access. There seems to be a small positive impact of minimum wage on the likelihood of being obese, but no impact on BMI. I’m not sure how to interpret that, but there is also evidence that a minimum wage increase leads to a reduction in fruit and vegetable consumption, which adds credence to the obesity finding. The results also demonstrate that a minimum wage increase can reduce the number of days that people report to be in poor health. But generally – on aggregate – there isn’t much going on at all. So the authors look at subgroups. Smoking is found to increase (and BMI decrease) with minimum wage for younger non-married white males. Obesity is more likely to be increased by minimum wage hikes for people who are white or married, and especially for those in older age groups. Women seem to benefit from fewer days with mental health problems. The main concerns identified in this paper are that minimum wage increases could increase smoking in young men and could reduce fruit and veg consumption. But I don’t think we should overstate it. There’s a lot going on in the data, and though the authors do a good job of trying to identify the effects, other explanations can’t be excluded. Minimum wage increases probably don’t have a major direct impact on health behaviours – positive or negative – but policymakers should take note of the potential value in providing public health interventions to those groups of people who are likely to be affected by the minimum wage.

Aligning policy objectives and payment design in palliative care. BMC Palliative Care [PubMed] Published 7th March 2018

Health care at the end of life – including palliative care – presents challenges in evaluation. The focus is on improving patients’ quality of life, but it’s also about satisfying preferences for processes of care, the experiences of carers, and providing a ‘good death’. And partly because these things can be difficult to measure, it can be difficult to design payment mechanisms to achieve desirable outcomes. Perhaps that’s why there is no current standard approach to funding for palliative care, with a lot of variation between countries, despite the common aspiration for universality. This paper tackles the question of payment design with a discussion of the literature. Traditionally, palliative care has been funded by block payments, per diems, or fee-for-service. The author starts with the acknowledgement that there are two challenges to ensuring value for money in palliative care: moral hazard and adverse selection. Providers may over-supply because of fee-for-service funding arrangements, or they may ‘cream-skim’ patients. Adverse selection may arise in an insurance-based system, with demand from high-risk people causing the market to fail. These problems could potentially be solved by capitation-based payments and risk adjustment. The market could also be warped by blunt eligibility restrictions and funding caps. Another difficulty is the challenge of achieving allocative efficiency between home-based and hospital-based services, made plain by the fact that, in many countries, a majority of people die in hospital despite a preference for dying at home. The author describes developments (particularly in Australia) in activity-based funding for palliative care. An interesting proposal – though not discussed in enough detail – is that payments could be made for each death (per mortems?). Capitation-based payment models are considered and the extent to which pay-for-performance could be incorporated is also discussed – the latter being potentially important in achieving those process outcomes that matter so much in palliative care. Yet another challenge is the question of when palliative care should come into play, because, in some cases, it’s a matter of sooner being better, because the provision of palliative care can give rise to less costly and more preferred treatment pathways. Thus, palliative care funding models will have implications for the funding of acute care. Throughout, the paper includes examples from different countries, along with a wealth of references to dig into. Helpfully, the author explicitly states in a table the models that different settings ought to adopt, given their prevailing model. As our population ages and the purse strings tighten, this is a discussion we can expect to be having more and more.

Credits