Chris Sampson’s journal round-up for 19th February 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Value of information methods to design a clinical trial in a small population to optimise a health economic utility function. BMC Medical Research Methodology [PubMed] Published 8th February 2018

Statistical significance – whatever you think of it – and the ‘power’ of clinical trials to detect change, is an important decider in clinical decision-making. Trials are designed to be big enough to detect ‘statistically significant’ differences. But in the context of rare diseases, this can be nigh-on impossible. In theory, the required sample size could exceed the size of the whole population. This paper describes an alternative method for determining sample sizes for trials in this context, couched in a value of information framework. Generally speaking, power calculations ignore the ‘value’ or ‘cost’ associated with errors, while a value of information analysis would take this into account and allow accepted error rates to vary accordingly. The starting point for this study is the notion that sample sizes should take into account the size of the population to which the findings will be applicable. As such, sample sizes can be defined on the basis of maximising the expected (societal) utility associated with the conduct of the trial (whether the intervention is approved or not). The authors describe the basis for hypothesis testing within this framework and specify the utility function to be maximised. Honestly, I didn’t completely follow the stats notation in this paper, but that’s OK – the trial statisticians will get it. A case study application is presented from the context of treating children with severe haemophilia A, which demonstrates the potential to optimise utility according to sample size. The key point is that the power is much smaller than would be required by conventional methods and the sample size accordingly reduced. The authors also demonstrate the tendency for the optimal trial sample size to increase with the size of the population. This Bayesian approach at least partly undermines the frequentist basis on which ‘power’ is usually determined. So one issue is whether regulators will accept this as a basis for defining a trial that will determine clinical practice. But then regulators are increasingly willing to allow for special cases, and it seems that the context of rare diseases could be a way-in for Bayesian trial design of this sort.

EQ-5D-5L: smaller steps but a major step change? Health Economics [PubMed] Published 7th February 2018

This editorial was doing the rounds on Twitter last week. European (and Canadian) health economists love talking about the EQ-5D-5L. The editorial features in the edition of Health Economics that hosts the 5L value set for England, which – 2 years on – has finally satisfied the vagaries of academic publication. The authors provide a summary of what’s ‘new’ with the 5L, and why it matters. But we’ve probably all figured that out by now anyway. More interestingly, the editorial points out some remaining concerns with the use of the EQ-5D-5L in England (even if it is way better than the EQ-5D-3L and its 25-year old value set). For example, there is some clustering in the valuations that might reflect bias or problems with the technique and – even if they’re accurate – present difficulties for analysts. And there are also uncertain implications for decision-making that could systematically favour or disfavour particular treatments or groups of patients. On this basis, the authors support NICE’s decision to ‘pause’ and await independent review. I tend to disagree, for reasons that I can’t fit in this round-up, so come back tomorrow for a follow-up blog post.

Factors influencing health-related quality of life in patients with Type 1 diabetes. Health and Quality of Life Outcomes [PubMed] Published 2nd February 2018

Diabetes and its complications can impact upon almost every aspect of a person’s health. It isn’t clear what aspects of health-related quality of life might be amenable to improvement in people with Type 1 diabetes, or which characteristics should be targeted. This study looks at a cohort of trial participants (n=437) and uses regression analyses to determine which factors explain differences in health-related quality of life at baseline, as measured using the EQ-5D-3L. Age, HbA1c, disease duration and being obese all significantly influenced EQ-VAS values, while self-reported mental illness and unemployment status were negatively associated with EQ-5D index scores. People who were unemployed were more likely to report problems in the mobility, self-care, and pain/discomfort domains. There are some minor misinterpretations in the paper (divining a ‘reduction’ in scores from a cross-section, for example). And the use of standard linear regression models is questionable given the nature of EQ-5D-3L index values. But the findings demonstrate the importance of looking beyond the direct consequences of a disease in order to identify the causes of reduced health-related quality of life. Getting people back to work could be more effective than most health care as a means of improving health-related quality of life.

Financial incentives for chronic disease management: results and limitations of 2 randomized clinical trials with New York Medicaid patients. American Journal of Health Promotion [PubMed] Published 1st February 2018

Chronic diseases require (self-)management, but it isn’t always easy to ensure that patients adhere to the medication or lifestyle changes that could improve health outcomes. This study looks at the effectiveness of financial incentives in the context of diabetes and hypertension. The data are drawn from 2 RCTs (n=1879) which, together, considered 3 types of incentive – process-based, outcome-based, or a combination of the two – compared with no financial incentives. Process-based incentives rewarded participants for attending primary care or endocrinologist appointments and filling their prescriptions, up to a maximum of $250. Outcome-based incentives rewarded up to $250 for achieving target reductions in systolic blood pressure or blood glucose levels. The combined arms could receive both rewards up to the same maximum of $250. In short, none of the financial incentives made any real difference. But generally speaking, at 6-month follow-up, the movement was in the right direction, with average blood pressure and blood glucose levels tending to fall in all arms. It’s not often that authors include the word ‘limitations’ in the title of a paper, but it’s the limitations that are most interesting here. One key difficulty is that most of the participants had relatively acceptable levels of the target outcomes at baseline, meaning that they may already have been managing their disease well and there may not have been much room for improvement. It would be easy to interpret these findings as showing that – generally speaking – financial incentives aren’t effective. But the study is more useful as a way of demonstrating the circumstances in which we can expect financial incentives to be ineffective, and support a better-informed targeting for future programmes.


Thesis Thursday: Francesco Longo

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Francesco Longo who has a PhD from the University of York. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Essays on hospital performance in England
Luigi Siciliani
Repository link

What do you mean by ‘hospital performance’, and how is it measured?

The concept of performance in the healthcare sector covers a number of dimensions including responsiveness, affordability, accessibility, quality, and efficiency. A PhD does not normally provide enough time to investigate all these aspects and, hence, my thesis mostly focuses on quality and efficiency in the hospital sector. The concept of quality or efficiency of a hospital is also surprisingly broad and, as a consequence, perfect quality and efficiency measures do not exist. For example, mortality and readmissions are good clinical quality measures but the majority of hospital patients do not die and are not readmitted. How well does the hospital treat these patients? Similarly for efficiency: knowing that a hospital is more efficient because it now has lower costs is essential, but how is that hospital actually reducing costs? My thesis tries to answer also these questions by analysing various quality and efficiency indicators. For example, Chapter 3 uses quality measures such as overall and condition-specific mortality, overall readmissions, and patient-reported outcomes for hip replacement. It also uses efficiency indicators such as bed occupancy, cancelled elective operations, and cost indexes. Chapter 4 analyses additional efficiency indicators, such as admissions per bed, the proportion of day cases, and proportion of untouched meals.

You dedicated a lot of effort to comparing specialist and general hospitals. Why is this important?

The first part of my thesis focuses on specialisation, i.e. an organisational form which is supposed to generate greater efficiency, quality, and responsiveness but not necessarily lower costs. Some evidence from the US suggests that orthopaedic and surgical hospitals had 20 percent higher inpatient costs because of, for example, higher staffing levels and better quality of care. In the English NHS, specialist hospitals play an important role because they deliver high proportions of specialised services, commonly low-volume but high-cost treatments for patients with complex and rare conditions. Specialist hospitals, therefore, allow the achievement of a critical mass of clinical expertise to ensure patients receive specialised treatments that produce better health outcomes. More precisely, my thesis focuses on specialist orthopaedic hospitals which, for instance, provide 90% of bone and soft tissue sarcomas surgeries, and 50% of scoliosis treatments. It is therefore important to investigate the financial viability of specialist orthopaedic hospitals relative to general hospitals that undertake similar activities, under the current payment system. The thesis implements weighted least square regressions to compare profit margins between specialist and general hospitals. Specialist orthopaedic hospitals are found to have lower profit margins, which are explained by patient characteristics such as age and severity. This means that, under the current payment system, providers that generally attract more complex patients such as specialist orthopaedic hospitals may be financially disadvantaged.

In what way is your analysis of competition in the NHS distinct from that of previous studies?

The second part of my thesis investigates the effect of competition on quality and efficiency under two different perspectives. First, it explores whether under competitive pressures neighbouring hospitals strategically interact in quality and efficiency, i.e. whether a hospital’s quality and efficiency respond to neighbouring hospitals’ quality and efficiency. Previous studies on English hospitals analyse strategic interactions only in quality and they employ cross-sectional spatial econometric models. Instead, my thesis uses panel spatial econometric models and a cross-sectional IV model in order to make causal statements about the existence of strategic interactions among rival hospitals. Second, the thesis examines the direct effect of hospital competition on efficiency. The previous empirical literature has studied this topic by focusing on two measures of efficiency such as unit costs and length of stay measured at the aggregate level or for a specific procedure (hip and knee replacement). My thesis provides a richer analysis by examining a wider range of efficiency dimensions. It combines a difference-in-difference strategy, commonly used in the literature, with Seemingly Unrelated Regression models to estimate the effect of competition on efficiency and enhance the precision of the estimates. Moreover, the thesis tests whether the effect of competition varies for more or less efficient hospitals using an unconditional quantile regression approach.

Where should researchers turn next to help policymakers understand hospital performance?

Hospitals are complex organisations and the idea of performance within this context is multifaceted. Even when we focus on a single performance dimension such as quality or efficiency, it is difficult to identify a measure that could work as a comprehensive proxy. It is therefore important to decompose as much as possible the analysis by exploring indicators capturing complementary aspects of the performance dimension of interest. This practice is likely to generate findings that are readily interpretable by policymakers. For instance, some results from my thesis suggest that hospital competition improves efficiency by reducing admissions per bed. Such an effect is driven by a reduction in the number of beds rather than an increase in the number of admissions. In addition, competition improves efficiency by pushing hospitals to increase the proportion of day cases. These findings may help to explain why other studies in the literature find that competition decreases length of stay: hospitals may replace elective patients, who occupy hospital beds for one or more nights, with day case patients, who are instead likely to be discharged the same day of admission.

Sam Watson’s journal round-up for 12th February 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Tuskegee and the health of black men. The Quarterly Journal of Economics [RePEc] Published February 2018

In 1932, a study often considered the most infamous and potentially most unethical in U.S. medical history began. Researchers in Alabama enrolled impoverished black men in a research program designed to examine the effects of syphilis under the guise of receiving government-funded health care. The study was known as the Tuskegee syphilis experiment. For 40 years the research subjects were not informed they had syphilis nor were they treated, even after penicillin was shown to be effective. The study was terminated in 1972 after its details were leaked to the press; numerous men died, 40 wives contracted syphilis, and a number of children were born with congenital syphilis. It is no surprise then that there is distrust among African Americans in the medical system. The aim of this article is to examine whether the distrust engendered by the Tuskegee study could have contributed to the significant differences in health outcomes between black males and other groups. To derive a causal estimate the study makes use of a number of differences: black vs non-black, for obvious reasons; male vs female, since the study targeted males, and also since women were more likely to have had contact with and hence higher trust in the medical system; before vs after; and geographic differences, since proximity to the location of the study may be informative about trust in the local health care facilities. A wide variety of further checks reinforce the conclusions that the study led to a reduction in health care utilisation among black men of around 20%. The effect is particularly pronounced in those with low education and income. Beyond elucidating the indirect harms caused by this most heinous of studies, it illustrates the importance of trust in mediating the effectiveness of public institutions. Poor reputations caused by negligence and malpractice can spread far and wide – the mid-Staffordshire hospital scandal may be just such an example.

The economic consequences of hospital admissions. American Economic Review [RePEcPublished February 2018

That this paper’s title recalls that of Keynes’s book The Economic Consequences of the Peace is to my mind no mistake. Keynes argued that a generous and equitable post-war settlement was required to ensure peace and economic well-being in Europe. The slow ‘economic privation’ driven by the punitive measures and imposed austerity of the Treaty of Versailles would lead to crisis. Keynes was evidently highly critical of the conference that led to the Treaty and resigned in protest before its end. But what does this have to do with hospital admissions? Using an ‘event study’ approach – in essence regressing the outcome of interest on covariates including indicators of time relative to an event – the paper examines the impact hospital admissions have on a range of economic outcomes. The authors find that for insured non-elderly adults “hospital admissions increase out-of-pocket medical spending, unpaid medical bills, and bankruptcy, and reduce earnings, income, access to credit, and consumer borrowing.” Similarly, they estimate that hospital admissions among this same group are responsible for around 4% of bankruptcies annually. These losses are often not insured, but they note that in a number of European countries the social welfare system does provide assistance for lost wages in the event of hospital admission. Certainly, this could be construed as economic privation brought about by a lack of generosity of the state. Nevertheless, it also reinforces the fact that negative health shocks can have adverse consequences through a person’s life beyond those directly caused by the need for medical care.

Is health care infected by Baumol’s cost disease? Test of a new model. Health Economics [PubMed] [RePEcPublished 9th February 2018

A few years ago we discussed Baumol’s theory of the ‘cost disease’ and an empirical study trying to identify it. In brief, the theory supposes that spending on health care (and other labour-intensive or creative industries) as a proportion of GDP increases, at least in part, because these sectors experience the least productivity growth. Productivity increases the fastest in sectors like manufacturing and remuneration increases as a result. However, this would lead to wages in the most productive sectors outstripping those in the ‘stagnant’ sectors. For example, salaries for doctors would end up being less than those for low-skilled factory work. Wages, therefore, increase in the stagnant sectors despite a lack of productivity growth. The consequence of all this is that as GDP grows, the proportion spent on stagnant sectors increases, but importantly the absolute amount spent on the productive sectors does not decrease. The share of the pie gets bigger but the pie is growing at least as fast, as it were. To test this, this article starts with a theoretic two-sector model to develop some testable predictions. In particular, the authors posit that the cost disease implies: (i) productivity is related to the share of labour in the health sector, and (ii) productivity is related to the ratio of prices in the health and non-health sectors. Using data from 28 OECD countries between 1995 and 2016 as well as further data on US industry group, they find no evidence to support these predictions, nor others generated by their model. One reason for this could be that wages in the last ten years or more have not risen in line with productivity in manufacturing or other ‘productive’ sectors, or that productivity has indeed increased as fast as the rest of the economy in the health care sector. Indeed, we have discussed productivity growth in the health sector in England and Wales previously. The cost disease may well then not be a cause of rising health care costs – nevertheless, health care need is rising and we should still expect costs to rise concordantly.