Rachel Houten’s journal round-up for 8th July 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Adjusting for inflation and currency changes within health economic studies. Value in Health Published 13th June 2019

The purpose of the paper is to highlight the need for transparency in the reporting of methods of currency conversions and adjustments to costs to take inflation into account, in economic evaluations. It chimes with other recent literature which is less prescriptive in terms of providing methods guidelines and more about advocating the “tell us what you did and why” approach. It reminds me of my very first science lesson in high school where we were eager to get our hands on the experiments yet the teacher (met by much eye-rolling) insisted on the importance of describing the methods of any ‘study’. With space at a premium in academic writing, I know, and I’m likely guilty of, some transparency in assumptions being culled, but papers such as this highlight their necessity.

The authors discuss which inflation measure to base the adjustments on, whether to convert local currencies to US or International dollars, three methods of adjusting for inflation, and what to do when costs from other settings are part of the analysis. With a focus on low- and middle-income countries, and using a hypothetical example, the authors demonstrate that employing three different methods of adjusting for inflation can result in a large range in the final estimates.

The authors acknowledge that it is not a one-size-fits-all approach but favour a ‘mixed approach’ where micro-costing is possible and items can be classified as tradable and non-tradable, as they say this is likely to produce the most accurate estimates. However, a study reliant on previously published costing information would need to follow an alternative approach, of which there are two others detailed in the paper.

In terms of working with data from low- and middle-income countries, I can’t say it is my forté. However, the paper summarises the pros and cons of each of their proposed approaches in a straightforward way. The authors include a table that I think would provide an excellent reference point for anyone considering the best approach for their specific set of circumstances.

An updated systematic review of studies mapping (or cross‑walking) measures of health‑related quality of life to generic preference‑based measures to generate utility value. Applied Health Economics and Health Policy [PubMed] [RePEc] Published 3rd April 2019

This is an update of a review of studies published before 2007, which found 30 studies mapping to generic preference-based measures. This latest paper cites 180 included studies with a total of 233 mapping functions reported. The majority of the mapping functions were to the EQ-5D (147 mapping functions) with the second largest group mapping to the SF-6D (45 mapping functions).

Along with an increase in volume of mapping studies since the last review, there has been a marked increase in the different types of regression methods used, which signals a greater consideration of the distribution of the underlying utility data. Reporting on how well the mapping algorithms predict utility in different sub-groups has also increased.

The authors highlight that although mapping can fill an evidence gap, the uncertainty in the estimates is greater than directly measuring health-related quality of life in prospective studies. The authors signpost to ISPOR guidelines for the reporting of mapping studies and emphasise the need to include measurements of error as well as a plot of predicted versus observed values, to enable the user to understand and incorporate the accuracy of the mapping in their economic evaluations.

As stated by the authors, the results of this review provides a useful resource in terms of a catalogue of mapping studies, however it lacks any quality assessment of the studies (also made clear by the authors), so the choice of which mapping algorithm to use is still ours, and takes some thought.  The supplementary Excel file is a great resource to aid the choice as it includes some information about the populations used in the mapping studies alongside the methods, but more studies comparing mapping functions with the same aim against each other would be welcomed.

Investigating the relationship between formal and informal care: an application using panel data for people living together. Health Economics [PubMed] Published 7th June 2019

This paper adds to the literature on informal care by considering co-resident informal care in a UK setting using data from the British Household Panel Survey (BHPS). There has been an increase in the proportion of people receiving non-state provided care in recent years in the UK, and the BHPS also enables the impact of informal care on the use of each of these types of formal care to be explored.

The authors used an instrument for informal care to try to prevent bias due to correlations with other variables such as health. The instrument used for the availability of informal care was the number of adult daughters as it was found to be the most predictive (oh dear, I’ve two sons!). The authors then estimated the impact of informal care on home help, health visitor use, GP visits, and hospital stays.

In this study, informal care was a substitute for both state and non-state home help (with the impact greater for state home help) and complimentary to health visitor use, GP visits, and hospital stays. The authors suggest this may be due to the tasks completed by these different types of service providers and how household tasks are more likely to be undertaken by informal care givers than those more medical in nature. The fact this study considers co-residential care from any household member may explain the stronger substitution effect in this study compared to previous studies looking at informal caregivers living elsewhere as it could be assumed the caregiver residing with the care recipient is more able to provide care.

I find the make-up of households and how that impacts on the need for healthcare resources really interesting, especially as it is generally considered that informal care and the work of charities bolsters the NHS. The results of this study suggest that increases in informal care could generate savings in terms of the need for home help, but an increase in formal care resource use. The reasons for the complimentary relationship between informal care and health visitor, GP, and hospital visits need further exploration.

Credits

Chris Sampson’s journal round-up for 1st April 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Toward a centralized, systematic approach to the identification, appraisal, and use of health state utility values for reimbursement decision making: introducing the Health Utility Book (HUB). Medical Decision Making [PubMed] Published 22nd March 2019

Every data point reported in research should be readily available to us all in a structured knowledge base. Most of us waste most of our time retreading old ground, meaning that we don’t have the time to do the best research possible. One instance of this is in the identification of health state utility values to plug into decision models. Everyone who builds a model in a particular context goes searching for utility values – there is no central source. The authors of this paper are hoping to put an end to that.

The paper starts with an introduction to the importance of health state utility values in cost-effectiveness analysis, which most of us don’t need to read. Of course, the choice of utility values in a model is very important and can dramatically alter estimates of cost-effectiveness. The authors also discuss issues around the identification of utility values and the assessment of their quality and applicability. Then we get into the objectives of the ‘Health Utility Book’, which is designed to tackle these issues.

The Health Utility Book will consist of a registry (I like registries), backed by a systematic approach to the identification and inclusion (registration?) of utility values. The authors plan to develop a quality assessment tool for studies that report utility values, using a Delphi panel method to identify appropriate indicators of quality to be included. The quality assessment tool will be complemented by a tool to assess applicability, which will be developed through interviews with stakeholders involved in the reimbursement process.

In the first place, the Health Utility Book will only compile utility values for cancer, and some of the funding for the project is cancer specific. To survive, the project will need more money from more sources. To be sustainable, the project will need to attract funding indefinitely. Or perhaps it could morph into a crowd-sourced platform. Either way, the Health Utility Book has my support.

A review of attitudes towards the reuse of health data among people in the European Union: the primacy of purpose and the common good. Health Policy Published 21st March 2019

We all agree that data protection is important. We all love the GDPR. Organisations such as the European Council and the OECD are committed to facilitating the availability of health data as a means of improving population health. And yet, there often seem to be barriers to accessing health data, and we occasionally hear stories of patients opposing data sharing (e.g. care.data). Maybe people don’t want researchers to be using their data, and we just need to respect that. Or, more likely, we need to figure out what it is that people are opposed to, and design systems that recognise this.

This study reviews research on attitudes towards the sharing of health data for purposes other than treatment, among people living in the EU, employing a ‘configurative literature synthesis’ (a new one for me). From 5,691 abstracts, 29 studies were included. Most related to the use of health data in research in general, while some focused on registries. A few studies looked at other uses, such as for planning and policy purposes. And most were from the UK.

An overarching theme was a low awareness among the population about the reuse of health data. However, in some studies, a desire to be better informed was observed. In general, views towards the use of health data were positive. But this was conditional on the data being used to serve the common good. This includes such purposes as achieving a better understanding of diseases, improving treatments, or achieving more efficient health care. Participants weren’t so happy with health data reuse if it was seen to conflict with the interests of patients providing the data. Commercialisation is a big concern, including the sale of data and private companies profiting from the data. Employers and insurance companies were also considered a threat to patients’ interests. There were conflicting views about whether it is positive for pharmaceutical companies to have access to health data. A minority of people were against sharing data altogether. Certain types of data are seen as being particularly sensitive, including those relating to mental health or sexual health. In general, people expressed concern about data security and the potential for leaks. The studies also looked at the basis for consent that people would prefer. A majority accepted that their data could be used without consent so long as the data were anonymised. But there were no clear tendencies of preference for the various consent models.

It’s important to remember that – on the whole – patients want their data to be used to further the common good. But support can go awry if the data are used to generate profits for private firms or used in a way that might be perceived to negatively affect patients.

Health-related quality of life in injury patients: the added value of extending the EQ-5D-3L with a cognitive dimension. Quality of Life Research [PubMed] Published 18th March 2019

I’m currently working on a project to develop a cognition ‘bolt-on’ for the EQ-5D. Previous research has demonstrated that a cognition bolt-on could provide additional information to distinguish meaningful differences between health states, and that cognition might be a more important candidate than other bolt-ons. Injury – especially traumatic brain injury – can be associated with cognitive impairments. This study explores the value of a cognition bolt-on in this context.

The authors sought to find out whether cognition is sufficiently independent of other dimensions, whether the impact of cognitive problems is reflected in the EuroQol visual analogue scale (EQ VAS), and how a cognition bolt-on affects the overall explanatory power of the EQ-5D-3L. The data used are from the Dutch Injury Surveillance System, which surveys people who have attended an emergency department with an injury, including EQ-5D-3L. The survey adds a cognitive bolt-on relating to memory and concentration.

Data were available for 16,624 people at baseline, with 5,346 complete responses at 2.5-month follow-up. The cognition item was the least affected, with around 20% reporting any problems (though it’s worth noting that the majority of the cohort had injuries to parts of the body other than the head). The frequency of different responses suggests that cognition is dominant over other dimensions in the sense that severe cognitive problems tend to be observed alongside problems in other dimensions, but not vice versa. The mean EQ VAS for people reporting severe cognitive impairment was 41, compared with a mean of 75 for those reporting no problems. Regression analysis showed that moderate and severe cognitive impairment explained 8.7% and 6.2% of the variance of the EQ VAS. Multivariate analysis suggested that the cognitive dimension added roughly the same explanatory power as any other dimension. This was across the whole sample. Interestingly (or, perhaps, worryingly) when the authors looked at the subset of people with traumatic brain injury, the explanatory power of the cognitive dimension was slightly lower than overall.

There’s enough in this paper to justify further research into the advantages and disadvantages of using a cognition bolt-on. But I would say that. Whether or not the bolt-on descriptors used in this study are meaningful to patients remains an open question.

Developing the role of electronic health records in economic evaluation. The European Journal of Health Economics [PubMed] Published 14th March 2019

One way that we can use patients’ routinely collected data is to support the conduct of economic evaluations. In this commentary, the authors set out some of the ways to make the most of these data and discuss some of the methodological challenges. Large datasets have the advantage of being large. When this is combined with the collection of sociodemographic data, estimates for sub-groups can be produced. The data can also facilitate the capture of outcomes not otherwise available. For example, the impact of bariatric surgery on depression outcomes could be identified beyond the timeframe of a trial. The datasets also have the advantage of being representative, where trials are not. This could mean more accurate estimates of costs and outcomes. But there are things to bear in mind when using the data, such as the fact that coding might not always be very accurate, and coding practices could vary between observations. Missing data are likely to be missing for a reason (i.e. not at random), which creates challenges for the analyst. I had hoped that this paper would discuss novel uses of routinely collected data systems, such as the embedding of economic evaluations within them, rather than simply their use to estimate parameters for a model. But if you’re just getting started with using routine data, I suppose you could do worse than start with this paper.

Credits

My quality-adjusted life year

Why did I do it?

I have evaluated lots of services and been involved in trials where I have asked people to collect EQ-5D data. During this time several people have complained to me about having to collect EQ-5D data so I thought I would have a ‘taste of my own medicine’. I measured my health-related quality of life (HRQoL) using EQ-5D-3L, EQ-5D-VAS, and EQ-5D-5L, every day for a year (N=1). I had the EQ-5D on a spreadsheet on my smartphone and prompted myself to do it at 9 p.m. every night. I set a target of never being more than three days late in doing it, which I missed twice through the year. I also recorded health-related notes for some days, for instance, 21st January said “tired, dropped a keytar on toe (very 1980s injury)”.

By doing this I wanted to illuminate issues around anchoring, ceiling effects and ideas of health and wellness. With a big increase in wearable tech and smartphone health apps this type of big data collection might become a lot more commonplace. I have not kept a diary since I was about 13 so it was an interesting way of keeping track on what was happening, with a focus on health. Starting the year I knew I had one big life event coming up: a new baby due in early March. I am generally quite healthy, a bit overweight, don’t get enough sleep. I have been called a hypochondriac by people before, typically complaining of headaches, colds and sore throats around six months of the year. I usually go running once or twice a week.

From the start I was very conscious that I felt I shouldn’t grumble too much, that EQ-5D was mainly used to measure functional health in people with disease, not in well people (and ceiling effects were a feature of the EQ-5D). I immediately felt a ‘freedom’ of the greater sensitivity of the EQ-5D-5L when compared to the 3L so I could score myself as having slight problems with the 5L, but not that they were bad enough to be ‘some problems’ on the 3L.

There were days when I felt a bit achey or tired because I had been for a run, but unless I had an actual injury I did not score myself as having problems with pain or mobility because of this; generally if I feel achey from running I think of that as a good thing as having pushed myself hard, ‘no pain no gain’. I also started doing yoga this year which made me feel great but also a bit achey sometimes. But in general I noticed that one of the main problems I had was fatigue which is not explicitly covered in the EQ-5D but was reflected sometimes as being slightly impaired on usual activities. I also thought that usual activities could be impaired if you are working and travelling a lot, as you don’t get to do any of the things you enjoy doing like hobbies or spending time with family, but this is more of a capability question whereas the EQ-5D is more functional.

How did my HRQoL compare?

I matched up my levels on the individual domains to EQ-5D-3L and 5L index scores based on UK preference scores. The final 5L value set may still change; I used the most recent published scores. I also matched my levels to a personal 5L value set which I did using this survey which uses discrete choice experiments and involves comparing a set of pairs of EQ-5D-5L health states. I found doing this fascinating and it made me think about how mutually exclusive the EQ-5D dimensions are, and whether some health states are actually implausible: for instance, is it possible to be in extreme pain but not have any impairment on usual activities?

Surprisingly, my average EQ-5D-3L index score (0.982) was higher than the population averages for my age group (for England age 35-44 it is 0.888 based on Szende et al 2014); I expected them to be lower. In fact my average index scores were higher than the average for 18-24 year olds (0.922). I thought that measuring EQ-5D more often and having more granularity would lead to lower average scores but it actually led to high average scores.

My average score from the personal 5L value set was slightly higher than the England population value set (0.983 vs 0.975). Digging into the data, the main differences were that I thought that usual activities were slightly more important, and pain slightly less important, than the general population. The 5L (England tariff) correlated more closely with the VAS than the 3L (r2 =0.746 vs. r2 =0.586) but the 5L (personal tariff) correlated most closely with the VAS (r2 =0.792). So based on my N=1 sample, this suggests that the 5L is a better predictor of overall health than the 3L, and that the personal value set has validity in predicting VAS scores.

Figure 1. My EQ-5D-3L index score [3L], EQ-5D-5L index score (England value set) [5L], EQ-5DL-5L index score (personal value set) [5LP], and visual analogue scale (VAS) score divided by 100 [VAS/100].

Reflection

I definitely regretted doing the EQ-5D every day and was glad when the year was over! I would have preferred to have done it every week but I think that would have missed a lot of subtleties in how I felt from day to day. On reflection the way I was approaching it was that the end of each day I would try to recall if I was stressed, or if anything hurt, and adjust the level on the relevant dimension. But I wonder if I was prompted at any moment during the day as to whether I was stressed, had some mobility issues, or pain, would I say I did? It makes me think about Kahneman and Riis’s ‘remembering brain’ and ‘experiencing brain’. Was my EQ-5D profile a slave to my ‘remembering brain’ rather than my ‘experiencing brain’?

One thing when my score was low for a few days was when I had a really painful abscess on my tooth. At the time I felt like the pain was unbearable so had a high pain score, but looking back I wonder if it was that bad, but I didn’t want to retrospectively change my score. Strangely, I had the flu twice in this year which gave me some health decrements, which I don’t think has ever happened to me before (I don’t think it was just ‘man flu’!).

I knew that I was going to have a baby this year but I didn’t know that I would spend 18 days in hospital, despite not being ill myself. This has led me to think a lot more about ‘caregiver effects‘ – the impact of close relatives being ill; it is unnerving spending night after night in hospital, in this case because my wife was very ill after giving birth, and then when my baby son was two months old, he got very ill (both are doing a lot better now). Being in hospital with a sick relative is a strange feeling, stressful and boring at the same time. I spent a long time staring out of the window or scrolling through Twitter. When my baby son was really ill he would not sleep and did not want to be put down, so my arms were aching after holding him all night. I was lucky that I had understanding managers in work and I was not significantly financially disadvantaged by caring for sick relatives. And glad of the NHS and not getting a huge bill when family members are discharged from hospital.

Health, wellbeing & exercise

Doing this made me think more about the difference between health and wellbeing; there might be days where I was really happy but it wasn’t reflected in my EQ-5D index score. I noticed that doing exercise always led to a higher VAS score – maybe subconsciously I was thinking exercise was increasing my ‘health stock‘. I probably used the VAS score more like an overall wellbeing score rather than just health which is not correct – but I wonder if other people do this as well, and that is why there are less pronounced ceiling effects with the VAS score.

Could trials measure EQ-5D every day?

One advantage of EQ-5D and QALYs over other health outcomes is that they should be measured over a schedule and use the area under the curve. Completing an EQ5D every day has shown me that health does vary every day, but I still think it might be impractical for trial participants to complete an EQ-5D questionnaire every day. Perhaps EQ-5D data could be combined with a simple daily VAS score, possibly out of ten rather than 100 for simplicity.

Joint worst day: 6th and 7th October: EQ-5D-3L index 0.264, EQ-5D-5L index 0.724; personal EQ-5D-5L index 0.824; VAS score 60 – ‘abscess on tooth, couldn’t sleep, face swollen’.

Joint best day: 27th January, 7th September, 11th September, 18th November, 4th December, 30th December: EQ-5D-3L index 1.00;  both EQ-5D-5L index scores 1.00; VAS score 95 – notes include ‘lovely day with family’, ‘went for a run’, ‘holiday’, ‘met up with friends’.