Sam Watson’s journal round-up for 12th February 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Tuskegee and the health of black men. The Quarterly Journal of Economics [RePEc] Published February 2018

In 1932, a study often considered the most infamous and potentially most unethical in U.S. medical history began. Researchers in Alabama enrolled impoverished black men in a research program designed to examine the effects of syphilis under the guise of receiving government-funded health care. The study was known as the Tuskegee syphilis experiment. For 40 years the research subjects were not informed they had syphilis nor were they treated, even after penicillin was shown to be effective. The study was terminated in 1972 after its details were leaked to the press; numerous men died, 40 wives contracted syphilis, and a number of children were born with congenital syphilis. It is no surprise then that there is distrust among African Americans in the medical system. The aim of this article is to examine whether the distrust engendered by the Tuskegee study could have contributed to the significant differences in health outcomes between black males and other groups. To derive a causal estimate the study makes use of a number of differences: black vs non-black, for obvious reasons; male vs female, since the study targeted males, and also since women were more likely to have had contact with and hence higher trust in the medical system; before vs after; and geographic differences, since proximity to the location of the study may be informative about trust in the local health care facilities. A wide variety of further checks reinforce the conclusions that the study led to a reduction in health care utilisation among black men of around 20%. The effect is particularly pronounced in those with low education and income. Beyond elucidating the indirect harms caused by this most heinous of studies, it illustrates the importance of trust in mediating the effectiveness of public institutions. Poor reputations caused by negligence and malpractice can spread far and wide – the mid-Staffordshire hospital scandal may be just such an example.

The economic consequences of hospital admissions. American Economic Review [RePEcPublished February 2018

That this paper’s title recalls that of Keynes’s book The Economic Consequences of the Peace is to my mind no mistake. Keynes argued that a generous and equitable post-war settlement was required to ensure peace and economic well-being in Europe. The slow ‘economic privation’ driven by the punitive measures and imposed austerity of the Treaty of Versailles would lead to crisis. Keynes was evidently highly critical of the conference that led to the Treaty and resigned in protest before its end. But what does this have to do with hospital admissions? Using an ‘event study’ approach – in essence regressing the outcome of interest on covariates including indicators of time relative to an event – the paper examines the impact hospital admissions have on a range of economic outcomes. The authors find that for insured non-elderly adults “hospital admissions increase out-of-pocket medical spending, unpaid medical bills, and bankruptcy, and reduce earnings, income, access to credit, and consumer borrowing.” Similarly, they estimate that hospital admissions among this same group are responsible for around 4% of bankruptcies annually. These losses are often not insured, but they note that in a number of European countries the social welfare system does provide assistance for lost wages in the event of hospital admission. Certainly, this could be construed as economic privation brought about by a lack of generosity of the state. Nevertheless, it also reinforces the fact that negative health shocks can have adverse consequences through a person’s life beyond those directly caused by the need for medical care.

Is health care infected by Baumol’s cost disease? Test of a new model. Health Economics [PubMed] [RePEcPublished 9th February 2018

A few years ago we discussed Baumol’s theory of the ‘cost disease’ and an empirical study trying to identify it. In brief, the theory supposes that spending on health care (and other labour-intensive or creative industries) as a proportion of GDP increases, at least in part, because these sectors experience the least productivity growth. Productivity increases the fastest in sectors like manufacturing and remuneration increases as a result. However, this would lead to wages in the most productive sectors outstripping those in the ‘stagnant’ sectors. For example, salaries for doctors would end up being less than those for low-skilled factory work. Wages, therefore, increase in the stagnant sectors despite a lack of productivity growth. The consequence of all this is that as GDP grows, the proportion spent on stagnant sectors increases, but importantly the absolute amount spent on the productive sectors does not decrease. The share of the pie gets bigger but the pie is growing at least as fast, as it were. To test this, this article starts with a theoretic two-sector model to develop some testable predictions. In particular, the authors posit that the cost disease implies: (i) productivity is related to the share of labour in the health sector, and (ii) productivity is related to the ratio of prices in the health and non-health sectors. Using data from 28 OECD countries between 1995 and 2016 as well as further data on US industry group, they find no evidence to support these predictions, nor others generated by their model. One reason for this could be that wages in the last ten years or more have not risen in line with productivity in manufacturing or other ‘productive’ sectors, or that productivity has indeed increased as fast as the rest of the economy in the health care sector. Indeed, we have discussed productivity growth in the health sector in England and Wales previously. The cost disease may well then not be a cause of rising health care costs – nevertheless, health care need is rising and we should still expect costs to rise concordantly.


Brent Gibbons’s journal round-up for 22nd January 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Is retirement good for men’s health? Evidence using a change in the retirement age in Israel. Journal of Health Economics [PubMed] Published January 2018

This article is a tour de force from one chapter of a recently completed dissertation from the Hebrew University of Jerusalem. The article focuses on answering the question of what are the health implications of extending working years for older adults. As many countries are faced with critical decisions on how to adjust labor policies to solve rising pension costs (or in the case of the U.S., Social Security insolvency) in the face of aging populations, one obvious potential solution is to change the retirement age. Most OECD countries appear to have retirement ages in the mid-60’s with a number of countries on track to increase that threshold. Israel is one of these countries, having changed their retirement age for men from age 65 to age 67 in 2004. The author capitalizes on this exogenous change in retirement incentives, as workers will be incentivized to keep working to receive full pension benefits, to measure the causal effect of working in these later years, compared to retiring. As the relationship between employment and health is complicated by the endogenous nature of the decision to work, there is a growing literature that has attempted to deal with this endogeneity in different ways. Shai details the conflicting findings in this literature and describes various shortcomings of methods used. He helpfully categorizes studies into those that compare health between retirees and non-retirees (does not deal with selection problem), those that use variation in retirement age across countries (retirement ages could be correlated with individual health across countries), those that exploit variation in specific sector retirement ages (problem of generalizing to population), and those that use age-specific retirement eligibility (health may deteriorate at specific age regardless of eligibility for retirement). As this empirical question has amounted conflicting evidence, the author suggests that his methodology is an improvement on prior papers. He uses a difference-in-difference model that estimates the impact on various health outcomes, before and after the law change, comparing those aged 65-66 years after 2004 with both older and younger cohorts unaffected by the law. The assumption is that any differences in measured health between the age 65-66 group and the comparison group are a result of the extended work in later years. There are several different datasets used in the study and quite a number of analyses that attempt to assuage threats to a causal interpretation of results. Overall, results are that delaying the retirement age has a negative effect on individual health. The size of the effect found is in the ballpark of 1 standard deviation; outcome measures included a severe morbidity index, a poor health index, and the number of physician visits. In addition, these impacts were stronger for individuals with lower levels of education, which the author relates to more physically demanding jobs. Counterfactuals, for example number of dentist visits, which are not expected to be related to employment, are not found to be statistically different. Furthermore, there are non-trivial estimated effects on health care expenditures that are positive for the delayed retirement group. The author suggests that all of these findings are important pieces of evidence in retirement age policy decisions. The implication is that health, at least for men, and especially for those with lower education, may be negatively impacted by delaying retirement and that, furthermore, savings as a result of such policies may be tempered by increased health care expenditures.

Evaluating community-based health improvement programs. Health Affairs [PubMed] Published January 2018

For article 2, I see that the lead author is a doctoral student in health policy at Harvard, working with colleagues at Vanderbilt. Without intention, this round-up is highlighting two very impressive studies from extremely promising young investigators. This study takes on the challenge of evaluating community-based health improvement programs, which I will call CBHIPs. CBHIPs take a population-based approach to public health for their communities and often focus on issues of prevention and health promotion. Investment in CBHIPs has increased in recent years, emphasizing collaboration between the community and public and private sectors. At the heart of CBHIPs are the ideas of empowering communities to self-assess and make needed changes from within (in collaboration with outside partners) and that CBHIPs allow for more flexibility in creating programs that target a community’s unique needs. Evaluations of CBHIPs, however, suffer from limited resources and investment, and often use “easily-collectable data and pre-post designs without comparison or control communities.” Current overall evidence on the effectiveness of CBHIPs remains limited as a result. In this study, the authors attempt to evaluate a large set of CBHIPs across the United States using inverse propensity score weighting and a difference-in-difference analysis. Health outcomes on poor or fair health, smoking status, and obesity status were used at the county level from the BRFSS (Behavioral Risk Factor Surveillance System) SMART (Selected Metropolitan/Micropolitan Area Risk Trends) data. Information on counties implementing CBHIPs was compiled through a series of systematic web searches and through interviews with leaders in population health efforts in the public and private sector. With information on the exact years of implementation of CBHIPs in each county, a pre-post design was used that identified county treatment and control groups. With additional census data, untreated counties were weighted to achieve better balance on pre-implementation covariates. Importantly, treated counties were limited to those with CBHIPs that implemented programs related to smoking and obesity. Results showed little to no evidence that CBHIPs improved population health outcomes. For example, CBHIPs focusing on tobacco prevention were associated with a 0.2 percentage point reduction in the rate of smoking, which was not statistically significant. Several important limitations of the study were noted by the authors, such as limited information on the intensity of programs and resources available. It is recognized that it is difficult to improve population-level health outcomes and that perhaps the study period of 5-years post-implementation may not have been long enough. The researchers encourage future CBHIPs to utilize more rigorous evaluation methods, while acknowledging the uphill battle CBHIPs face to do this.

Through the looking glass: estimating effects of medical homes for people with severe mental illness. Health Services Research [PubMed] Published October 2017

The third article in this round-up comes from a publication from October of last year, however, it is from the latest issue of Health Services Research so I deem it fair play. The article uses the topic of medical homes for individuals with severe mental illness to critically examine the topic of heterogeneous treatment effects. While specifically looking to answer whether there are heterogeneous treatment effects of medical homes on different portions of the population with a severe mental illness, the authors make a strong case for the need to examine heterogeneous treatment effects as a more general practice in observational studies research, as well as to be more precise in interpretations of results and statements of generalizability when presenting estimated effects. Adults with a severe mental illness were identified as good candidates for medical homes because of complex health care needs (including high physical health care needs) and because barriers to care have been found to exist for these individuals. Medicaid medical homes establish primary care physicians and their teams as the managers of the individual’s overall health care treatment. The authors are particularly concerned with the reasons individuals choose to participate in medical homes, whether because of expected improvements in quality of care, regional availability of medical homes, or symptomatology. Very clever differences in estimation methods allow the authors to estimate treatment effects associated with these different enrollment reasons. As an example, an instrumental variables analysis, using measures of regional availability as instruments, estimated local average treatment effects that were much smaller than the fixed effects estimates or the generalized estimating equation model’s effects. This implies that differences in county-level medical home availability are a smaller portion of the overall measured effects from other models. Overall results were that medical homes were positively associated with access to primary care, access to specialty mental health care, medication adherence, and measures of routine health care (e.g. screenings); there was also a slightly negative association with emergency room use. Since unmeasured stable attributes (e.g. patient preferences) do not seem to affect outcomes, results should be generalizable to the larger patient population. Finally, medical homes do not appear to be a good strategy for cost-savings but do promise to increase access to appropriate levels of health care treatment.


Chris Sampson’s journal round-up for 20th November 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Effects of health and social care spending constraints on mortality in England: a time trend analysis. BMJ Open [PubMed] Published 15th November 2017

I’d hazard a guess that I’m not the only one here who gets angry about the politics of austerity. Having seen this study’s title, it’s clear that the research could provide fuel for that anger. It doesn’t disappoint. Recent years have seen very low year-on-year increases in public expenditure on health in England. Even worse, between 2010 and 2014, public expenditure on social care actually fell in real terms. This is despite growing need for health and social care. In this study, the authors look at health and social care spending and try to estimate the impact that reduced expenditure has had on mortality in England. The analysis uses spending and mortality data from 2001 onwards and also incorporates mortality projections for 2015-2020. Time trend analyses are conducted using Poisson regression models. From 2001-2010, deaths decreased by 0.77% per year (on average). The mortality rate was falling. Now it seems to be increasing; from 2011-2014, the average number of deaths per year increased by 0.87%. This corresponds to 18,324 additional deaths in 2014, for example. But everybody dies. Extra deaths are really sooner deaths. So the question, really, is how much sooner? The authors look at potential years of life lost and find this figure to be 75,496 life-years greater than expected in 2014, given pre-2010 trends. This shouldn’t come as much of a surprise. Spending less generally achieves less. What makes this study really interesting is that it can tell us who is losing these potential years of life as a result of spending cuts. The authors find that it’s the over-60s. Care home deaths were the largest contributor to increased mortality. A £10 cut in social care spending per capita resulted in 5 additional care home deaths per 100,000 people. When the authors looked at deaths by local area, no association was found with the level of deprivation. If health and social care expenditure are combined in a single model, we see that it’s social care spending that is driving the number of excess deaths. The impact of health spending on hospital deaths was less robust. The number of nurses acted as a mediator for the relationship between spending and mortality. The authors estimate that current spending projections will result in 150,000 additional deaths compared with pre-2010 trends. There are plenty of limitations to this study. It’s pretty much impossible (though the authors do try) to separate the effects of austerity from the effect of a weak economy. Still, I’m satisfied with the conclusion that austerity kills older people (no jokes about turkeys and Christmas, please). For me, the findings also highlight the need for more research in the context of social care, and how we (as researchers) might effectively direct policy to prevent ‘excess’ deaths.

Should cost effectiveness analyses for NICE always consider future unrelated medical costs? BMJ [PubMed] Published 10th November 2017

The question of whether or not ‘unrelated’ future medical costs should be included in economic evaluation is becoming a hot topic. So much so that the BMJ has published this Head To Head, which introduces some of the arguments for and against. NICE currently recommends excluding unrelated future medical costs. An example given in this article is the case of the expected costs of dementia care having saved someone’s life by heart transplantation. The argument in favour of including unrelated costs is quite obvious – these costs can’t be ignored if we seek to maximise social welfare. Their inclusion is described as “not difficult” by the authors defending this move. By ignoring unrelated future costs (but accounting for the benefit of longer life), the relative cost-effectiveness of life-extending treatments, compared with life-improving treatments, is artificially inflated. The argument against including unrelated medical costs is presented as one of fairness. The author suggests that their inclusion could preclude access to health care for certain groups of people that are likely to have high needs in the future. So perhaps NICE should ignore unrelated medical costs in certain circumstances. I sympathise with this view, but I feel it is less a fairness issue and more a demonstration of the current limits of health-related quality of life measurement, which don’t reflect adaptation and coping. However, I tend to disagree with both of the arguments presented here. I really don’t think NICE should include or exclude unrelated future medical costs according to the context because that could create some very perverse incentives for certain stakeholders. But then, I do not agree that it is “not difficult” to include all unrelated future costs. ‘All’ is an important qualifier here because the capacity for analysts to pick and choose unrelated future costs creates the potential to pick and choose results. When it comes to unrelated future medical costs, NICE’s position needs to be all-or-nothing, and right now the ‘all’ bit is a high bar to clear. NICE should include unrelated future medical costs – it’s difficult to formulate a sound argument against that – but they should only do so once more groundwork has been done. In particular, we need to develop more valid methods for valuing quality of life against life-years in health technology assessment across different patient groups. And we need more reliable methods for estimating future medical costs in all settings.

Oncology modeling for fun and profit! Key steps for busy analysts in health technology assessment. PharmacoEconomics [PubMed] Published 6th November 2017

Quite a title(!). The subject of this essay is ‘partitioned survival modelling’. Honestly,  I never really knew what that was until I read this article. It seems the reason for my ignorance could be that I haven’t worked on the evaluation of cancer treatments, for which it’s a popular methodology. Apparently, a recent study found that almost 75% of NICE cancer drug appraisals were informed by this sort of analysis. Partitioned survival modelling is a simple means by which to extrapolate outcomes in a context where people can survive (or not) with or without progression. Often this can be on the basis of survival analyses and standard trial endpoints. This article seeks to provide some guidance on the development and use of partitioned survival models. Or, rather, it provides a toolkit for calling out those who might seek to use the method as a means of providing favourable results for a new therapy when data and analytical resources are lacking. The ‘key steps’ can be summarised as 1) avoiding/ignoring/misrepresenting current standards of economic evaluation, 2) using handpicked parametric approaches for extrapolation in order to maximise survival benefits, 3) creatively estimating relative treatment effects using indirect comparisons without adjustment, 4) make optimistic assumptions about post-progression outcomes, and 5) deny the possibility of any structural uncertainty. The authors illustrate just how much an analyst can influence the results of an evaluation (if they want to “keep ICERs in the sweet spot!”). Generally, these tactics move the model far from being representative of reality. However, the prevailing secrecy around most models means that it isn’t always easy to detect these shortcomings. Sometimes it is though, and the authors make explicit reference to technology appraisals that they suggest demonstrate these crimes. Brilliant!