Chris Sampson’s journal round-up for 20th November 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Effects of health and social care spending constraints on mortality in England: a time trend analysis. BMJ Open [PubMed] Published 15th November 2017

I’d hazard a guess that I’m not the only one here who gets angry about the politics of austerity. Having seen this study’s title, it’s clear that the research could provide fuel for that anger. It doesn’t disappoint. Recent years have seen very low year-on-year increases in public expenditure on health in England. Even worse, between 2010 and 2014, public expenditure on social care actually fell in real terms. This is despite growing need for health and social care. In this study, the authors look at health and social care spending and try to estimate the impact that reduced expenditure has had on mortality in England. The analysis uses spending and mortality data from 2001 onwards and also incorporates mortality projections for 2015-2020. Time trend analyses are conducted using Poisson regression models. From 2001-2010, deaths decreased by 0.77% per year (on average). The mortality rate was falling. Now it seems to be increasing; from 2011-2014, the average number of deaths per year increased by 0.87%. This corresponds to 18,324 additional deaths in 2014, for example. But everybody dies. Extra deaths are really sooner deaths. So the question, really, is how much sooner? The authors look at potential years of life lost and find this figure to be 75,496 life-years greater than expected in 2014, given pre-2010 trends. This shouldn’t come as much of a surprise. Spending less generally achieves less. What makes this study really interesting is that it can tell us who is losing these potential years of life as a result of spending cuts. The authors find that it’s the over-60s. Care home deaths were the largest contributor to increased mortality. A £10 cut in social care spending per capita resulted in 5 additional care home deaths per 100,000 people. When the authors looked at deaths by local area, no association was found with the level of deprivation. If health and social care expenditure are combined in a single model, we see that it’s social care spending that is driving the number of excess deaths. The impact of health spending on hospital deaths was less robust. The number of nurses acted as a mediator for the relationship between spending and mortality. The authors estimate that current spending projections will result in 150,000 additional deaths compared with pre-2010 trends. There are plenty of limitations to this study. It’s pretty much impossible (though the authors do try) to separate the effects of austerity from the effect of a weak economy. Still, I’m satisfied with the conclusion that austerity kills older people (no jokes about turkeys and Christmas, please). For me, the findings also highlight the need for more research in the context of social care, and how we (as researchers) might effectively direct policy to prevent ‘excess’ deaths.

Should cost effectiveness analyses for NICE always consider future unrelated medical costs? BMJ [PubMed] Published 10th November 2017

The question of whether or not ‘unrelated’ future medical costs should be included in economic evaluation is becoming a hot topic. So much so that the BMJ has published this Head To Head, which introduces some of the arguments for and against. NICE currently recommends excluding unrelated future medical costs. An example given in this article is the case of the expected costs of dementia care having saved someone’s life by heart transplantation. The argument in favour of including unrelated costs is quite obvious – these costs can’t be ignored if we seek to maximise social welfare. Their inclusion is described as “not difficult” by the authors defending this move. By ignoring unrelated future costs (but accounting for the benefit of longer life), the relative cost-effectiveness of life-extending treatments, compared with life-improving treatments, is artificially inflated. The argument against including unrelated medical costs is presented as one of fairness. The author suggests that their inclusion could preclude access to health care for certain groups of people that are likely to have high needs in the future. So perhaps NICE should ignore unrelated medical costs in certain circumstances. I sympathise with this view, but I feel it is less a fairness issue and more a demonstration of the current limits of health-related quality of life measurement, which don’t reflect adaptation and coping. However, I tend to disagree with both of the arguments presented here. I really don’t think NICE should include or exclude unrelated future medical costs according to the context because that could create some very perverse incentives for certain stakeholders. But then, I do not agree that it is “not difficult” to include all unrelated future costs. ‘All’ is an important qualifier here because the capacity for analysts to pick and choose unrelated future costs creates the potential to pick and choose results. When it comes to unrelated future medical costs, NICE’s position needs to be all-or-nothing, and right now the ‘all’ bit is a high bar to clear. NICE should include unrelated future medical costs – it’s difficult to formulate a sound argument against that – but they should only do so once more groundwork has been done. In particular, we need to develop more valid methods for valuing quality of life against life-years in health technology assessment across different patient groups. And we need more reliable methods for estimating future medical costs in all settings.

Oncology modeling for fun and profit! Key steps for busy analysts in health technology assessment. PharmacoEconomics [PubMed] Published 6th November 2017

Quite a title(!). The subject of this essay is ‘partitioned survival modelling’. Honestly,  I never really knew what that was until I read this article. It seems the reason for my ignorance could be that I haven’t worked on the evaluation of cancer treatments, for which it’s a popular methodology. Apparently, a recent study found that almost 75% of NICE cancer drug appraisals were informed by this sort of analysis. Partitioned survival modelling is a simple means by which to extrapolate outcomes in a context where people can survive (or not) with or without progression. Often this can be on the basis of survival analyses and standard trial endpoints. This article seeks to provide some guidance on the development and use of partitioned survival models. Or, rather, it provides a toolkit for calling out those who might seek to use the method as a means of providing favourable results for a new therapy when data and analytical resources are lacking. The ‘key steps’ can be summarised as 1) avoiding/ignoring/misrepresenting current standards of economic evaluation, 2) using handpicked parametric approaches for extrapolation in order to maximise survival benefits, 3) creatively estimating relative treatment effects using indirect comparisons without adjustment, 4) make optimistic assumptions about post-progression outcomes, and 5) deny the possibility of any structural uncertainty. The authors illustrate just how much an analyst can influence the results of an evaluation (if they want to “keep ICERs in the sweet spot!”). Generally, these tactics move the model far from being representative of reality. However, the prevailing secrecy around most models means that it isn’t always easy to detect these shortcomings. Sometimes it is though, and the authors make explicit reference to technology appraisals that they suggest demonstrate these crimes. Brilliant!

Credits

Sam Watson’s journal round-up for 13th November 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Scaling for economists: lessons from the non-adherence problem in the medical literature. Journal of Economic Perspectives [RePEcPublished November 2017

It has often been said that development economics has been at the vanguard of the use of randomised trials within economics. Other areas of economics have slowly caught up; the internal validity, and causal interpretation, offered by experimental randomised studies can provide reliable estimates for the effects of particular interventions. Health economics though has perhaps an even longer history with randomised controlled trials (RCTs), and now economic evaluation is often expected alongside clinical trials. RCTs of physician incentives and payments, investment programmes in child health, or treatment provision in schools all feature as other examples. However, even experimental studies can suffer from the same biases in the data analysis process as observational studies. The multiple decisions made in the data analysis and publication stages of research can lead to over-inflated estimates. Beyond that, the experimental conditions of the trial may not pertain in the real world – the study may lack external validity. The medical literature has long recognised this issue, as many as 50% of patients don’t take the medicines prescribed to them by a doctor. As a result, there has been considerable effort to develop an understanding of, and interventions to remedy, the lack of transferability between RCTs and real-world outcomes. This article summarises this literature and develops lessons for economists, who are only just starting to deal with, what they term, ‘the scaling problem’. For example, there are many reasons people don’t respond to incentives as expected: there are psychological costs to switching; people are hyperbolic discounters and often prefer small short-term gains for larger long-term costs; and, people can often fail to understand the implications of sets of complex options. We have also previously discussed the importance of social preferences in decision making. The key point is that, as policy is becoming more and more informed by randomised studies, we need to be careful about over-optimism of effect sizes and start to understand adherence to different policies in the real world. Only then are recommendations reliable.

Estimating the opportunity costs of bed-days. Health Economics [PubMedPublished 6th November 2017

The health economic evaluation of health service delivery interventions is becoming an important issue in health economics. We’ve discussed on many occasions questions surrounding the implementation of seven-day health services in England and Wales, for example. Other service delivery interventions might include changes to staffing levels more generally, medical IT technology, or an incentive to improve hand washing. Key to the evaluation of these interventions is that they are all generally targeted at improving quality of care – that is, to reduce preventable harm. The vast majority of patients who experience some sort of preventable harm do not die but are likely to experience longer lengths of stay in hospital. Consider a person suffering from bed sores or a fall in hospital. Therefore, we need to be able to value those extra bed days to be able to say what the value of improving hospital quality is. Typically we use reference costs or average accounting costs for the opportunity cost of a bed-day, mainly for pragmatic reasons, but also on the assumption that this is equivalent to the value of the second-best alternative foregone. This requires the assumption that health care markets operate properly, which they almost certainly do not. This paper explores the different ways economists have thought about opportunity costs and applies them to the question of the opportunity cost of a hospital bed-day. This includes definitions such as “Net health benefit forgone for the second-best patient‐equivalents”, “Net monetary benefit forgone for the second-best treatment-equivalents”, and “Expenditure incurred + highest net revenue forgone.” The key takeaway is that there is wide variation in the estimated opportunity costs using all the different methods and that, given the assumptions underpinning the most widely used methodologies are unlikely to hold, we may be routinely under- or over-valuing the effects of different interventions.

Universal investment in infants and long-run health: evidence from Denmark’s 1937 Home Visiting Program. American Economic Journal: Applied Economics [RePEcPublished October 2017

We have covered a raft of studies that look at the effects of in-utero health on later life outcomes, the so-called fetal origins hypothesis. A smaller, though by no means small, literature has considered what impact improving infant and childhood health has on later life adult outcomes. While many of these studies consider programmes that occurred decades ago in the US or Europe, their findings are still relevant today as many countries are grappling with high infant and childhood mortality. For many low-income countries, programmes with community health workers – lay-community members provided with some basic public health training – involving home visits, education, and referral services are being widely adopted. This article looks at the later life impacts of an infant health programme, the Home Visiting Program, implemented in Denmark in the 1930s and 40s. The aim of the programme was to provide home visits to every newborn in each district to provide education on feeding and hygiene practices and to monitor infant progress. The programme was implemented in a trial based fashion with different districts adopting the programme at different times and some districts remaining as control districts, although selection into treatment and control was not random. Data were obtained about the health outcomes in the period 1980-2012 of people born 1935-49. In short, the analyses suggest that the programme improved adult longevity and health outcomes, although the effects are small. For example, they estimate the programme reduced hospitalisations by half a day between the age of 45 and 64, and 2 to 6 more people per 1,000 survived past 60 years of age. However, these effect sizes may be large enough to justify what may be a reasonably low-cost programme when scaled across the population.

Credits

Sam Watson’s journal round-up for 2nd October 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

The path to longer and healthier lives for all Africans by 2030: the Lancet Commission on the future of health in sub-Saharan Africa. The Lancet [PubMedPublished 13th September 2017

The African continent has the highest rates of economic growth, the fastest growing populations and rates of urbanisation, but also the highest burden of disease. The challenges for public health and health care provision are great. It is no surprise then that this Lancet commission on the future of health in Sub-Saharan Africa runs to 57 pages yet still has some notable absences. In the space of a few hundred words, it would be impossible to fully discuss the topics in this tome, these will appear in future blog posts. For now, I want to briefly discuss a lack of consideration of the importance of political economy in the Commission’s report. For example, the report notes the damaging effects of IMF and World Bank structural adjustment programs in the 70s and 80s. These led to a dismantling of much of the public sector in indebted African nations in order for them to qualify for further loans. However, these issues have not gone away. Despite strongly emphasizing that countries in Africa must increase their health spending, it does not mention that many countries spend much more servicing debt than on public health and health care. Kenya, for example, will soon no longer qualify for aid as it becomes a middle-income country, and yet it spends almost double (around $6 billion) servicing its debt than it does on health care (around $3 billion). Debt reform and relief may be a major step towards increasing health expenditure. The inequalities in access to basic health services reflect the disparities in income and wealth both between and within countries. The growth of slums across the continent is stark evidence of this. Residents of these communities, despite often facing the worst exposure to major disease risk factors, are often not recognised by authorities and cannot access health services. Even where health services are available there are still difficulties with access. A lack of regulation and oversight can lead the growth of a rentier class within slums as those with access to small amounts of capital, land, or property act as petty landlords. So while some in slum areas can afford the fees for basic health services, the poorest still face a barrier even when services are available. These people are also those who have little access to decent water and sanitation or education and have the highest risk of disease. Finally, the lack of incentives for trained doctors and medical staff to work in poor or rural areas is also identified as a key problem. Many doctors either leave for wealthier countries or work in urban areas. Doctors are often a powerful interest group and can influence macro health policy, distorting it to favour richer urban areas. Political solutions are required, as well as the public health interventions more widely discussed. The Commission’s report is extensive and worth the time to read for anyone with an interest in the subject matter. What also becomes clear upon reading it is the lack of solid evidence on health systems and what works and does not work. From an economic perspective, much of the evidence pertaining to health system functioning and efficiency is still just the results from country-level panel data regressions, which tell us very little about what is actually happening. This results in us being able to identify areas needed for reform with very little idea of how.

The relationship of health insurance and mortality: is lack of insurance deadly? Annals of Internal Medicine [PubMedPublished 19th September 2017

One sure-fire way of increasing your chances of publishing in a top-ranked journal is to do something on a hot political topic. In the UK this has been seven-day services, as well as other issues relating to deficiencies of supply. In the US, health insurance is right up there with the Republicans trying to repeal the Affordable Care Act, a.k.a. Obamacare. This paper systematically reviews the literature on the relationship between health insurance coverage and the risk of mortality. The theory being that health insurance permits access to medical services and therefore treatment and prevention measures that reduce the risk of death. Many readers will be familiar with the Oregon Health Insurance Experiment, in which the US state of Oregon distributed access to increased Medicaid expansion by lottery, therein creating an RCT. This experiment, which takes a top spot in the review, estimated that those who had ‘won’ the lottery had a mortality rate 0.032 percentage points lower than the ‘losers’, whose mortality rate was 0.8%; a relative reduction of around 4%. Similar results were found for the quasi-experimental studies included, and slightly larger effects were found in cohort follow-up studies. These effects are small. But then so is the baseline. Most of these studies only examined non-elderly, non-disabled people, who would otherwise not qualify for any other public health insurance. For people under 45 in the US, the leading cause of death is unintentional injury, and its only above this age that cancer becomes the leading cause of death. If you suffer major trauma in the US you will (for the most part) be treated in an ER insured or uninsured, even if you end up with a large bill afterwards. So it’s no surprise that the effects of insurance coverage on mortality are very small for these people. This is probably the inappropriate endpoint to be looking at for this study. Indeed, the Oregon experiment found that the biggest differences were in reduced out-of-pocket expenses and medical debt, and improved self-reported health. The review’s conclusion that, “The odds of dying among the insured relative to the uninsured is 0.71 to 0.97,” is seemingly unwarranted. If they want to make a political point about the need for insurance, they’re looking in the wrong place.

Smoking, expectations, and health: a dynamic stochastic model of lifetime smoking behavior. Journal of Political Economy [RePEcPublished 24th August 2017

I’ve long been sceptical of mathematical models of complex health behaviours. The most egregious of which is often the ‘rational addiction’ literature. Originating with the late Gary Becker, the rational addiction model, in essence, assumes that addiction is a rational choice made by utility maximising individuals, whose preferences alter with use of a particular drug. The biggest problem I find with this approach is that it is completely out of touch with the reality of addiction and drug dependence, and makes absurd assumptions about the preferences of addicts. Nevertheless, it has spawned a sizable literature. And, one may argue that the model is useful if it makes accurate predictions, regardless of the assumptions underlying it. On this front, I have yet to be convinced. This paper builds a rational addiction-type model for smoking to examine whether learning of one’s health risks reduces smoking. As an illustration of why I dislike this method of understanding addictive behaviours, the authors note that “…the model cannot explain why individuals start smoking. […] The estimated preference parameters in the absence of a chronic illness suggest that, for a never smoker under the age of 25, there is no incentive to begin smoking because the marginal utility of smoking is negative.” But for many, social and cultural factors simply explain why young people start smoking. The weakness of the deductive approach to social science seems to rear its head, but like I said, the aim here may be the development of good predictive models. And, the model does appear to predict smoking behaviour well. However, it is all in-sample prediction, and with the number of parameters it is not surprising it predicts well. This discussion is not meant to be completely excoriating. What is interesting is the discussion and attempt to deal with the endogeneity of smoking – people in poor health may be more likely to smoke and so the estimated effects of smoking on longevity may be overestimated. As a final point of contention though, I’m still trying to work out what the “addictive stock of smoking capital” is.

Credits