Thesis Thursday: Frank Sandmann

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Frank Sandmann who has a PhD from the London School of Hygiene & Tropical Medicine. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
The true cost of epidemic and outbreak diseases in hospitals
Supervisors
Mark Jit, Sarah Deeny, Julie Robotham, John Edmunds
Repository link
http://researchonline.lshtm.ac.uk/4648208/

Do you refer to the ‘true’ cost because some costs are hidden in this context?

That’s a good observation. Economists use the term “true cost” as a synonym for “opportunity cost”, which can be defined as the net value of the forgone second-best use of a resource. The true value of a hospital bed is therefore determined by its second-best use, which may indeed be less easily observed and less obvious, or somewhat hidden.

In the context of infectious disease outbreaks in hospital, the most visible costs are the direct expenditures on treatments of infected cases and any measures of containment. However, they do not capture the full extent of the “alternative” costs and therefore cannot equal opportunity costs. Slightly less visible are the potential knock-on effects for visitors to the hospital who, unbeknown to them, may get infected and contribute to sustained transmission in the community. Least seen are the externalities borne by patients who have not been admitted so far but who are awaiting admission, and for whom there is no space in hospital yet due to the ongoing outbreak.

In my thesis, I provided a general overview of the historical development of the concept of opportunity costs of resources before I looked in detail at bed-days and the application for hospitals.

How should the opportunity cost of hospital stays be determined?

That depends on for whom you want to determine these costs.

For individual patients, it depends on the very subjective decision of how else they would spend their time instead, and how urgent it is to receive hospital care.

From the perspective of hospital administrators, it is straightforward to calculate the opportunity costs based on the revenues and expenditures of the inpatients, their length of stays, and the existing demand of care from the community. This is quite important because whether there are opportunity costs from forgone admissions will depend on whether there are other patients actually waiting to be admitted, which is somewhat reflected in occupancy rates and of course waiting lists.

Any other decision maker who is acting as an agent on behalf of a collective group or the public should look into the forgone health impact of patients who cannot be admitted when the beds are unavailable to them. In my thesis, I proposed a method for quantifying the opportunity costs of bed-days with the net benefit of the second-best patients forgone, which I illustrated with the example of norovirus-associated gastroenteritis.

How important are differences in methods for costing in the context of gastroenteritis and norovirus?

The results can differ quite substantially when using different costing methods. Norovirus is an ideal illness to illustrate this issue given that otherwise healthy people with gastrointestinal symptoms and no further comorbidities or complications shouldn’t be admitted to hospital in order to minimise the risk of an outbreak. Patients with norovirus are therefore often not the patient group that is benefitting the most from a hospital stay.

In one of the studies of my PhD, I was able to show that the annual burden of norovirus in public hospitals in England amounts to a mean £110 million using conventional costing methods, while the opportunity costs were two-to-three times higher of up to £300 million.

This means that there is the potential for a situation where an intervention is disadvantaged when using conventional methods for costing and ignoring the opportunity costs. When evaluating such an intervention against established decision rules of cost-effectiveness, this may lead to an incorrect decision.

What were some of the key challenges that you encountered in estimating the cost of norovirus to hospitals, and how did you overcome them?

There were at least four key challenges:

First was the number of admissions. Many inpatients with norovirus won’t get recorded as such if they haven’t been laboratory-confirmed. That is why I regressed national inpatient episodes of gastroenteritis against laboratory surveillance reports for ten different gastrointestinal pathogens to estimate the norovirus-attributable proportion.

Second was the number of bed-days used by inpatients that were infected with norovirus during their hospital stay. Using their total length of stay, or some form of propensity matching, suffers from time-dependent biases and overestimates the number of bed-days. Instead, I used a multi-state model and patient-level data from a local hospital.

Third was the bed-days that were left unoccupied for infection control. One of the datasets tracked them mandatorily for acute hospitals during winters, while another surveillance system was voluntary, but recorded outbreaks throughout the year. For a more accurate estimate, I compared both datasets with each other to explore their potential overlap.

Fourth was the forgone health of alternative admissions who had otherwise occupied the beds. I had to make assumptions about the disease progression with and without hospital treatment, for which I used health-state utilities that accounted for age, sex, and the primary medical condition.

If you could have wished for one additional set of data that wasn’t available, what would it have been?

I have been very fortunate to work with a number of colleagues at Public Health England and University College London who provided me with much of the epidemiological data that I needed. My research could have benefitted though from a dataset that tracked the time of infection for a larger patient population and for longer observation periods, and a dataset that included more robust estimates for the health gain from hospital care.

If I could make a wish about the existing datasets on norovirus that I have used, I would wish for a higher rate of reporting given that it became clear from our comparison of datasets that there is a highly-correlated trend, but the number of outbreaks reported and the details of reporting leave room for improvement. Another wish of mine for daily reporting of bed-days during winter became reality only recently; during my PhD, I had to impute missing values that were non-randomly missing at weekends and over the Christmas period. This was changed in winter 2016, and I have recently shown that the mean of our lowest-to-highest imputation scenarios is surprisingly close to the daily number of bed-days recorded since then.

Parts of your thesis are made up of journal articles that you published before submission. Was this always your intention and how did you find the experience?

I always wanted to publish parts of my thesis in separate journal articles as I believe this to be a great chance to reach different audiences. That is because my theoretical research on opportunity costs may be of broader interest than just to those who work on norovirus or bed-days given that my findings are generalisable to other diseases as well as other resources. At the same time, others may be more interested in my results for norovirus, and still others in my application of the various statistical, economic, and mathematical modelling techniques.

After all, I honestly suspect that some people may place a higher value on their next-best alternative use of time than reading my thesis from cover to cover.

Writing up my thoughts early on also helped me refine them, and the peer-review process was a great opportunity to get some additional feedback. It did require good time management skills though to keep coming back to previous studies to address the peer-reviewers’ comments while I was already busy working on the next studies.

All in all, I can recommend others to consider it and, looking back, I’d do it again this way.

Thesis Thursday: Thomas Hoe

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Thomas Hoe who has a PhD from University College London. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
Essays on the economics of health care provision
Supervisors
Richard Blundell, Orazio Attanasio
Repository link
http://discovery.ucl.ac.uk/10048627/

What data do you use in your analyses and what are your main analytical methods?

I use data from the English National Health Service (NHS). One of the great features of the NHS is the centralized data it collects, with the Hospital Episodes Statistics (HES) containing information on every public hospital visit in England.

In my thesis, I primarily use two empirical approaches. In my work on trauma and orthopaedic departments, I exploit the fact that the number of emergency trauma admissions to hospital each day is random. This randomness allows me to conduct a quasi-experiment to assess how hospitals perform when they are more or less busy.

The second approach I use, in my work on emergency departments with Jonathan Gruber and George Stoye, is based on bunching techniques that originated in the tax literature (Chetty et al, 2013; Kleven and Waseem, 2013; Saez, 2010). These techniques use interpolation to infer how discontinuities in incentive schemes affect outcomes. We apply and extend these techniques to evaluate the impact of the ‘4-hour target’ in English emergency departments.

How did you characterise and measure quality in your research?

Measuring the quality of health care outcomes is always a challenge in empirical research. Since my research primarily relies on administrative data from HES, I use the patient outcomes that can be directly constructed from this data: in-hospital mortality, and unplanned readmission.

Mortality is, of course, an outcome that is widely used, and offers an unambiguous interpretation. Readmission, on the other hand, is an outcome that has gained more acceptance as a measure of quality in recent years, particularly following the implementation of readmission penalties in the UK and the US.

What is ‘crowding’, and how can it affect the quality of care?

I use the term crowding to refer, in a fairly general sense, to how busy a hospital is. This could mean that the hospital is physically very crowded, with lots of patients in close proximity to one another, or that the number of patients outstrips the available resources.

In practice, I evaluate how crowding affects quality of care by comparing hospital performance and patient outcomes on days when hospitals deal with different levels of admissions (due to random spikes in the number of trauma admissions). I find that hospitals respond by not only cancelling some planned admissions, such as elective hip and knee replacements, but also discharge existing patients sooner. For these discharged patients, the shorter-than-otherwise stay in the hospital is associated with poorer health outcomes for patients, most notably an increase in subsequent hospital visits (unplanned readmissions).

How might incentives faced by hospitals lead to negative consequences?

One of the strongest incentives faced by public hospitals in England is to meet the government-set waiting time target for elective care. This target has been very successful at reducing wait times. In doing so, however, it may have contributed to hospitals shortening patient stays and increasing patient admissions.

My research shows that shorter hospitals stays, in turn, can lead to increases in unplanned readmissions. Setting strong wait time targets, then, is in effect trading off shorter waits (from which patients benefit) with crowding effects (which may harm patients).

Your research highlights the importance of time in the hospital production process. How does this play out?

I look at this from three dimensions, each a separate part of a patient’s journey through hospital.

The first two relate to waiting for treatment. For elective patients, this means waiting for an appointment, and previous work has shown that patients attach significant value to reductions in these wait times. I show that trauma and orthopaedic patients would be better off with further wait time reductions, even if that leads to more crowding.

Emergency patients, in contrast, wait for treatment while physically in a hospital emergency department. I show that these waiting times can be very harmful and that by shortening these wait times we can actually save lives.

The third dimension relates to how long a patient spends in hospital recovering from surgery. I show that, at least on the margin of care for trauma and orthopaedic patients, an additional day in hospital has tangible benefits in terms of reducing the likelihood of experiencing an unplanned readmission.

How could your findings be practically employed in the NHS to improve productivity?

I would highlight two areas of my research that speak directly to the policy debate about NHS productivity.

First, while the wait time targets for elective care may have led to some crowding problems and subsequently more readmissions, the net benefit of these targets to trauma and orthopaedic patients is positive. Second, the wait time target for emergency departments also appears to have benefited patients: it saved lives at a reasonably cost-effective rate.

From the perspective of patients, therefore, I would argue these policies have been relatively successful and should be maintained.

Meeting round-up: CINCH Academy 2018

On 18-23 June, researchers, coming from Australia, Germany, the Netherlands, and the United Kingdom, were gathered together at the annual CINCH summer school, an academic program for early stage researchers in health economics. The fifth CINCH Academy was held in Essen, Germany, by one of Germany’s leading health economics centres – CINCH. The institute brings together the region’s most notable health economics institutions: RWI – Leibniz Institute for Economic Research, the Faculty of Economics and Business Administration at the University of Duisburg-Essen, and the Institute for Competition Economics (DICE) at the Heinrich-Heine-University in Düsseldorf.

This year the focus of the Academy was hospital economics and mental health. On the first days of the event, Luigi Siciliani (University of York) gave a very informative block of lectures on hospital competition as well as currently often-debated quality of health care, waiting times and patient’s choice. To strengthen the learning process, after each topic, participants were requested to answer a set of questions and engaged in discussions that helped to better understand the lecture materials. After a productive first block of lectures, Richard G. Frank (Harvard University) provided a comprehensive insight into the economics of mental health and emphasized the distinguishing marks of topics in mental health such as salient features of mental illness, the role of government, mental health illness protection and mental health policy. Encouraged by the lecturer and with a high interest, each participant took part in the discussion and shared their knowledge about specific situations and handlings in their home countries.

In addition to the educational material, each participant had an opportunity to present his or her current research topic and be discussed by another participant. The large range of topics, such as the influence of crime on residents’ mental wellbeing, the influence of unpaid care on formal care utilization and the impact of increased hospital expenditures on population mortality, created a very interactive atmosphere for discussions. Senior researcher Daniel Howdon (University of Leeds) chaired the paper session and gave additional helpful comments for each presenter.

Apart from an interesting academic program, the summer school further fostered an interaction between participants in several social activities organized by the CINCH team. Besides several dinners after intensive days, participants had a chance to participate in a specially organized city tour in Essen and visit the Zollverein Coal Mine Industrial Complex (Zeche Zollverein) that is inscribed into the UNESCO list of World Heritage Sites. The large industrial monument is often named as the cultural heart of the Ruhr Area. After a guided tour through the complex, all participants once again gathered to have a dinner at a traditional restaurant of this region. Social activities not only allowed to further discuss topics of the lectures but also to share different personal experiences about pursuing a doctoral degree in different countries and about other daily interests for each early-stage researcher such as intensive learning, travelling to conferences, obtaining datasets, etc.

On the last day of the summer school, organizers announced the Best Paper Award, that was awarded to Elizabeth Lemmon (University of Stirling) for her research paper “Utilisation of personal care services in Scotland: the influence of unpaid carers”. Besides the financial reward, her work will be published in the CINCH Working Paper Series.

CINCH Academy was an excellent opportunity to deepen the knowledge and insights in hospital and mental health economics. Our special thanks goes to lecturers, Luigi Siciliani and Richard G. Frank, to paper sessions chair Daniel Howdon, as well as to the great organizational team Christoph Kronenberg and Annika Jäschke.

Credit