Brendan Collins’s journal round-up for 14th January 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Income distribution and health: can polarization explain health outcomes better than inequality? The European Journal of Health Economics [PubMed] Published 4th December 2018

One of my main interests is health inequalities. I thought polarisation was intuitive; I had seen it in the context of the UK and the US employment market; an increase in poorly-paid ‘McJobs’ and an increase in well-paid ‘MacJobs’, with fewer jobs in the middle. But I hadn’t seen polarisation measured in a statistical way.

Traditional measures of population inequalities like Gini or Atkinson index measure the share of income or the ratio of richest to poorest. But polarisation goes a step further and looks whether there are discrete clusters or groups who have similar incomes. The theory goes that having discrete groups increases social alienation, conflict and socioeconomic comparison and increases health inequalities. Now, I get how you can test statistically for discrete income clusters, and there is an evidence base for the relationship between polarisation and social tension. But groups will cluster based on other factors besides income. I feel like it may be taking a leap to assume a statistical finding (income polarisation) will always represent a sociological construct (alienation) but I confess I don’t know the literature behind this.

China is a country with an increasing degree of polarisation as measured by the Duclos, Esteban and Ray (DER) polarisation indices, and this study suggests that it is related to health status. This study looked at trends in BMI and systolic blood pressure from 1991 to 2011 and found both to increase with increased polarisation. I imagine a lot of other social change went on in this time period in China. I think BMI might not be a good candidate for measuring the effect of polarisation, as being poor is associated with malnourishment and low weight as well as obesity. The authors found that social capital (based on increasing family size, community size, and living in the same community for a long time) had a protective effect against the effects of polarisation on health. Whether this study provides more evidence for the socioeconomic comparison or status anxiety theories of health inequalities, I am not sure; it could equally provide evidence for the neo-materialist (i.e. simply not having enough resources for a healthy life) theories – the relative importance will likely differ by country anyway.

Maybe we don’t need to add more measures of inequality to the mix but I am intrigued. I am just starting my journey with polarisation but I think it has promise.

Two-year evaluation of mandatory bundled payments for joint replacement. The New England Journal of Medicine [PubMed] Published 2nd January 2019

Joint replacements are a big cost to western healthcare systems and often delayed or rationed (partly because replacement joints may only have a 10-20 year lifespan on average). In the UK, for instance, joint replacements have been rationed based on factors like BMI or pain levels (in my opinion, often in an arbitrary way to save money).

This paper found that having a bundled payments and penalties model (Comprehensive Care for Joint Replacement; CJR) for optimal care around hip and knee replacements reduced Medicare spending per episode compared to areas that did not pilot the programme. The overall difference was small in absolute terms at $812 against a total cost of around $24,000 per episode. The programme involves the hospital meeting a set of performance measures, and if they can do so at a lower cost, any savings are shared between the hospital and the payer. Cost savings were mainly driven by a reduction in patients being discharged to post-acute care facilities. Rates of complex patients were similar between pilot and control areas – this is important because a lower rate of complex cases in the CJR trial areas might indicate hospitals ‘cherry picking’ easier to treat, less expensive cases. Also, rates of complications were not significantly different between the CJR pilot areas and controls.
This paper suggests that having this kind of bundled payment programme can save money while maintaining quality.

Association of the Hospital Readmissions Reduction Program with mortality among Medicare beneficiaries hospitalized for heart failure, acute myocardial infarction, and pneumonia. JAMA [PubMed] Published 25th December 2018

Nobody likes being in hospital. But sometimes hospitals are the best places for people. This paper looks at possible unintended consequences of a US programme; the Hospital Readmissions Reduction Program (HRRP) where the Centers for Medicare & Medicaid Services (CMS) impose financial penalties (almost $2billion dollars’ worth since 2012) on hospitals with elevated 30-day readmission rates for patients with heart failure, acute myocardial infarction, and pneumonia. This study compared four time periods (no control group) and found that, after the programme was implemented, death rates for people who had been admitted with pneumonia and heart failure increased, with these increased deaths occurring more in people who had not been readmitted to hospital. The analysis controlled for differences in demographics, comorbidities, and calendar month using propensity scores and inverse probability weighting.

The authors are clear that their results do not establish cause and effect but are concerning nonetheless and worthy of more analysis. Incidentally, there is another paper this week in Health Affairs which suggests that the benefits of the programme in reducing readmissions was overstated.

There has been a similar financial incentive in the English NHS where hospitals are subject to the 30-day readmission rule, meaning they are not paid for people who are readmitted as an emergency within 30 days of being discharged. This is shortly to be abolished for 2019/20. I wonder if there has been similar research on whether this also led to unintended consequences in the NHS. Maybe there is a general lesson here about thinking a bit deeper about the potential outcomes of incentives in healthcare markets?

In these last two papers, we have had two examples of financial incentive programmes from Medicare. The CJR, which seems to have worked, has been dampened down from a mandatory to a voluntary programme, while the HRRP, which may not have worked, has been extended.

Credits

Method of the month: Distributional cost effectiveness analysis

Once a month we discuss a particular research method that may be of interest to people working in health economics. We’ll consider widely used key methodologies, as well as more novel approaches. Our reviews are not designed to be comprehensive but provide an introduction to the method, its underlying principles, some applied examples, and where to find out more. If you’d like to write a post for this series, get in touch. This month’s method is distributional cost effectiveness analysis.

Principles

Variation in population health outcomes, particularly when socially patterned by characteristics such as income and race, are often of concern to policymakers. For example, the fact that people born in the poorest tenth of neighbourhoods in England can expect to live 19 fewer years of healthy life than those living in the richest tenth of neighbourhoods in the country, or the fact that black Americans born today can expect to die 4 years earlier than white Americans, are often considered to be unfair and in need of policy attention. As policymakers look to implement health programmes to tackle such unfair health disparities, they need the tools to enable them to evaluate the likely impacts of alternative programmes available to them in terms of the programmes’ impact on reducing these undesirable health inequalities, as well as their impact on improving population health.

Traditional tools for prospectively evaluating health programmes – that is to say, estimating the likely impacts of health programmes prior to their implementation – are typically based on cost-effectiveness analysis (CEA). CEA selects those programmes that improve the health of the average recipient of the programme the most, taking into consideration the health opportunity costs involved in implementing the programme. When using CEA to select health programmes there is, therefore, a risk that the programmes selected will not necessarily reduce the health disparities of concern to policymakers as these disparities are not part of the evaluation process used when comparing programmes. Indeed, in some cases, the programmes chosen using CEA may even unintentionally exacerbate these health inequalities.

There has been recent methodological work to build upon the standard CEA methods explicitly incorporating concerns for reducing health disparities into them. This equity augmented form of CEA is called distributional cost effectiveness analysis (DCEA). DCEA estimates the impacts of health interventions on different groups within the population and evaluates the health distributions resulting from these interventions in term of both health inequality and population health. Where necessary, DCEA can then be used to guide the trade-off between these different dimensions to pick the most “socially beneficial” programme to implement.

Implementation

The six core steps in implementing a DCEA are outlined below – full details of how DCEA is conducted in practice and applied to evaluate alternative options in a real case study (the NHS Bowel Cancer Screening Programme in England) can be found in a published tutorial.

1. Identify policy-relevant subgroups in the population

The first step in the analysis is to decide which characteristics of the population are of policy concern when thinking about health inequalities. For example, in England, there is a lot of concern about the fact that people born in poor neighbourhoods expect to die earlier than those born in rich neighbourhoods but little concern about the fact that men have shorter life expectancies than women.

2. Construct the baseline distribution of health

The next step is to construct a baseline distribution of health for the population. This baseline distribution describes the health of the population, typically measured in quality-adjusted life expectancy at birth, to show the level of health and health inequality prior to implementing the proposed interventions. This distribution can be standardised (using methods of either direct or indirect standardisation) to remove any variation in health that is not associated with the characteristics of interest. For example, in England, we might standardise the health distribution to remove variation associated with gender but retain variation associated with neighbourhood deprivation. This then gives us a description of the population health distribution with a particular focus on the health disparities we are trying to reduce. An example of how to construct such a ‘social distribution of health’ for England is given in another published article.

3. Estimate post-intervention distributions of health

We next estimate the health impacts of the interventions we are comparing. In producing these estimates we need to take into account differences by each of the equity relevant subgroups identified in the:

  • prevalence and incidence of the diseases impacted by the intervention,
  • rates of uptake and adherence to the intervention,
  • efficacy of the intervention,
  • mortality and morbidity, and
  • health opportunity costs.

Standardising these health impacts and combining with the baseline distribution of health derived above gives us estimated post-intervention distributions of health for each intervention.

4. Compare post-intervention distributions using the health equity impact plane

Once post-intervention distributions of health have been estimated for each intervention we can compare them both in terms of their level of average health and in terms of their level of health inequality. Whilst calculating average levels of health in the distributions is straightforward, calculating levels of inequality requires some value judgements to be made. There is a wide range of alternative inequality measures that could be employed each of which captures different aspects of inequality. For example, relative inequality measures would conclude that a health distribution where half the population lives for 40 years and the other half lives for 50 years is just as unequal as a health distribution where half the population lives for 80 years and the other half lives for 100 years. An absolute inequality measure would instead conclude that the equivalence is with a population where half the population lives for 80 years and the other half lives for 90 years.

Two commonly used inequality measures are the Atkinson relative inequality measure and the Kolm absolute inequality measure. These both have the additional feature that they can be calibrated using an inequality aversion parameter to vary the level of priority given to those worst off in the distribution. We will see these inequality aversion parameters in action in the next step of the DCEA process.

Having selected a suitable inequality measure we can plot our post interventions distributions on a health equity impact plane. Let us assume we are comparing two interventions A and B, we can plot intervention A at the origin of the plane and plot intervention B relative to A on the plane.

 

 

If intervention B falls in the north-east quadrant of the health equity impact plane we know it both improves health overall and reduces health inequality relative to intervention A and so intervention B should be selected. If, however, intervention B falls in the south-west quadrant of the health equity impact plane we know it both reduces health and increases health inequality relative to intervention A and so intervention A should be selected. If intervention B falls either in the north-west or south-east quadrants of the health equity impact plane there is no obvious answer as to which intervention should be preferred as there is a trade-off to be made between health equity and total health.

5. Evaluate trade-offs between inequality and efficiency using social welfare functions

We use social welfare functions to trade-off between inequality reduction and average health improvement. These social welfare functions are constructed by combining our chosen measure of inequality with the average health in the distribution. This combination of inequality and average health is used to calculate what is known as an equally distributed equivalent (EDE) level of health. The EDE summarises the health distribution being analysed as one number representing the amount of health that each person in a hypothetically perfectly equal health distribution would need to have for us to be indifferent between the actual health distribution analysed and this perfectly equal health distribution. Where our social welfare function is built around an inequality measure with an inequality aversion parameter this EDE level of health will also be a function of the inequality aversion parameter. Where inequality aversion is set to zero there is no concern for inequality and the EDE simply reflects the average health in the distribution replicating results we would see under standard utilitarian CEA. As the inequality aversion level approaches infinity, our focus becomes increasingly on those worse off in the health distribution until at the limit we reflect the Rawlsian idea of focusing entirely on improving the lot of the worst-off in society.

 

Social welfare functions derived from the Atkinson relative inequality measure and the Kolm absolute inequality measure are given below, with the inequality aversion parameters circled. Research carried out with members of the public in England suggests that suitable values for the Atkinson and Kolm inequality aversion parameters are 10.95 and 0.15 respectively.

Atkinson Relative Social Welfare Function Kolm Absolute Social Welfare Function

When comparing interventions where one intervention does not simply dominate the others on the health equity impact plane we need to use our social welfare functions to calculate EDE levels of health associated with each of the interventions and then select the intervention that produces the highest EDE level of health.

In the example depicted in the figure above we can see that pursuing intervention A results in a health distribution which appears less unequal but has a lower average level of health than the health distribution resulting from intervention B. The choice of intervention, in this case, will be determined by the form of social welfare function selected and the level of inequality this social welfare function is parameterised to embody.

6. Conduct sensitivity analysis on forms of social welfare function and extent of inequality aversion

Given that the conclusions drawn from DCEA may be dependent on the social value judgments made around the inequality measure used and the level of inequality aversion embodied in it, we should present results for a range of alternative social welfare functions parameterised at a range of inequality aversion levels. This will allow decision makers to clearly understand how robust conclusions are to alternative social value judgements.

Applications

DCEA is of particular use when evaluating large-scale public health programmes that have an explicit goal of tackling health inequality. It has been applied to the NHS bowel cancer screening programme in England and to the rotavirus vaccination programme in Ethiopia.

Some key limitations of DCEA are that: (1) it currently only analyses programmes in terms of their health impacts whilst large public health programmes often have important impacts across a range of sectors beyond health; and (2) it requires a range of data beyond that required by standard CEA which may not be readily available in all contexts.

For low and middle-income settings an alternative augmented CEA methodology called extended cost effectiveness analysis (ECEA) has been developed to combine estimates of health impacts with estimates of impacts on financial risk protection. More information on ECEA can be found here.

There are ongoing efforts to generalise the DCEA methods to be applied to interventions having impacts across multiple sectors. Follow the latest developments on DCEA at the dedicated website based at the Centre for Health Economics, University of York.

Credit

Chris Sampson’s journal round-up for 27th August 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Ethically acceptable compensation for living donations of organs, tissues, and cells: an unexploited potential? Applied Health Economics and Health Policy [PubMed] Published 25th August 2018

Around the world, there are shortages of organs for transplantation. In economics, the debate around the need to increase organ donation can be frustratingly ignorant of ethical and distributional concerns. So it’s refreshing to see this article attempting to square concerns about efficiency and equity. The authors do so by using a ‘spheres of justice’ framework. This is the idea that different social goods should be distributed according to different principles. So, while we might be happy for brocolli and iPhones to be distributed on the basis of free exchange, we might want health to be distributed on the basis of need. The argument can be extended to state that – for a just situation to prevail – certain exchanges between these spheres of justice (e.g. health for iPhones) should never take place. This idea might explain why – as the authors demonstrate with a review of European countries – policy tends not to allow monetary compensation for organ donation.

The paper cleverly sets out to taxonomise monetary and non-monetary reimbursement and compensation with reference to individuals’ incentives and the spheres of justice principles. From this, the authors reach two key conclusions. Firstly, that (monetary) reimbursement of donors’ expenses (e.g. travel costs or lost earnings) is ethically sound as this does not constitute an incentive to donate but rather removes existing disincentives. Secondly, that non-monetary compensation could be deemed ethical.

Three possible forms of non-monetary compensation are discussed: i) prioritisation, ii) free access, and iii) non-health care-related benefits. The first could involve being given priority for receiving organs, or it could extend to the jumping of other health care waiting lists. I think this is more problematic than the authors let on because it asserts that health care should – at least in part – be distributed according to desert rather than need. The second option – free access – could mean access to health care that people would otherwise have to pay for. The third option could involve access to other social goods such as education or housing.

This is an interesting article and an enjoyable read, but I don’t think it provides a complete solution. Maybe I’m just too much of a Marxist, but I think that this – as all other proposals – fails to distribute from each according to ability. That is, we’d still expect non-monetary compensation to incentivise poorer (and on average less healthy) people to donate organs, thus exacerbating health inequality. This is because i) poorer people are more likely to need the non-monetary benefits and ii) we live in a capitalist society in which there is almost nothing that money can’t by and which is strictly non-monetary. Show me a proposal that increases donation rates from those who can most afford to donate them (i.e. the rich and healthy).

Selecting bolt-on dimensions for the EQ-5D: examining their contribution to health-related quality of life. Value in Health Published 18th August 2018

Measures such as the EQ-5D are used to describe health-related quality of life as completely and generically as possible. But there is a trade-off between completeness and the length of the questionnaire. Necessarily, there are parts of the evaluative space that measures will not capture because they are a simplification. If the bit they’re missing is important to your patient group, that’s a problem. You might fancy a bolt-on. But how do we decide which areas of the evaluative space should be more completely included in the measure? Which bolt-ons should be used? This paper seeks to provide means of answering these questions.

The article builds on an earlier piece of work that was included in an earlier journal round-up. In the previous paper, the authors used factor analysis to identify candidate bolt-ons. The goal of this paper is to outline an approach for specifying which of these candidates ought to be used. Using data from the Multi-Instrument Comparison study, the authors fit linear regressions to see how well 37 candidate bolt-on items explain differences in health-related quality of life. The 37 items correspond to six different domains: energy/vitality, satisfaction, relationships, hearing, vision, and speech. In a second test, the authors explored whether the bolt-on candidates could explain differences in health-related quality of life associated with six chronic conditions. Health-related quality of life is defined according to a visual analogue scale, which notably does not correspond to that used in the EQ-5D but rather uses a broader measure of physical, mental, and social health.

The results suggest that items related to energy/vitality, relationships, and satisfaction explained a significant part of health-related quality of life on top of the existing EQ-5D dimensions. The implication is that these could be good candidates for bolt-ons. The analysis of the different conditions was less clear.

For me, there’s a fundamental problem with this study. It moves the goals posts. Bolt-ons are about improving the extent to which a measure can more accurately represent the evaluative space that it is designed to characterise. In this study, the authors use a broader definition of health-related quality of life that – as far as I can tell – the EQ-5D is not designed to capture. We’re not dealing with bolt-ons, we’re dealing with extensions to facilitate expansions to the evaluative space. Nevertheless, the method could prove useful if combined with a more thorough consideration of the evaluative space.

Sources of health financing and health outcomes: a panel data analysis. Health Economics [PubMed] [RePEc] Published 15th August 2018

There is a growing body of research looking at the impact that health (care) spending has on health outcomes. Usually, these studies don’t explicitly look at who is doing the spending. In this study, the author distinguishes between public and private spending and attempts to identify which type of spending (if either) results in greater health improvements.

The author uses data from the World Bank’s World Development Indicators for 1995-2014. Life expectancy at birth is adopted as the primary health outcome and the key expenditure variables are health expenditure as a share of GDP and private health expenditure as a share of total health expenditure. Controlling for a variety of other variables, including some determinants of health such as income and access to an improved water source, a triple difference analysis is described. The triple difference estimator corresponds to the difference in health outcomes arising from i) differences in the private expenditure level, given ii) differences in total expenditure, over iii) time.

The key finding from the study is that, on average, private expenditure is more effective in increasing life expectancy at birth than public expenditure. The author also looks at government effectiveness, which proves crucial. The finding in favour of private expenditure entirely disappears when only countries with effective government are considered. There is some evidence that public expenditure is more effective in these countries, and this is something that future research should investigate further. For countries with ineffective governments, the implication is that policy should be directed towards increasing overall health care expenditure by increasing private expenditure.

Credits