Paul Mitchell’s journal round-up for 17th April 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Is foreign direct investment good for health in low and middle income countries? An instrumental variable approach. Social Science & Medicine [PubMed] Published 28th March 2017

Foreign direct investment (FDI) is considered a key benefit of globalisation in the economic development of countries with developing economies. The effect FDI has on the population health of countries is less well understood. In this paper, the authors draw from a large panel of data, primarily World Bank and UN sources, for 85 low and middle income countries between 1974 and 2012 to assess the relationship between FDI and population health, proxied by life expectancy at birth, as well as child and adult mortality data. They explain clearly the problem of using basic regression analysis in trying to explain this relationship, given the problem of endogeneity between FDI and health outcomes. By introducing two instrumental variables, using grossed fixed capital formation and volatility of exchange rates in FDI origin countries, as well as controlling for GDP per capita, education, quality of institutions and urban population, the study shows that FDI is weakly statistically associated with life expectancy, estimated to amount to 4.15 year increase in life expectancy during the study period. FDI also appears to have an effect on reducing adult mortality, but a negligible effect on child mortality. They also produce some evidence that FDI linked to manufacturing could lead to reductions in life expectancy, although these findings are not as robust as the other findings using instrumental variables, so they recommend this relationship between FDI type and population health to be explored further. The paper also clearly shows the benefit of robust analysis using instrumental variables, as the results without the introduction of these variables to the regression would have led to misleading inferences, where no relationship between life expectancy and FDI would have been found if the analysis did not adjust for the underlying endogeneity bias.

Uncovering waste in US healthcare: evidence from ambulance referral patterns. Journal of Health Economics [PubMed] Published 22nd March 2017

This study looks to unpick some of the reasons behind the estimated waste in US healthcare spending, by focusing on mortality rates across the country following an emergency admission to hospital through ambulances. The authors argue that patients admitted to hospital for emergency care using ambulances act as a good instrument to assess hospital quality given the nature of emergency admissions limiting the selection bias of what type of patients end up in different hospitals. Using linear regressions, the study primarily measures the relationship between patients assigned to certain hospitals and the 90-day spending on these patients compared to mortality. They also consider one-year mortality and the downstream payments post-acute care (excluding pharmaceuticals outside the hospital setting) has on this outcome. Through a lengthy data cleaning process, the study looks at over 1.5 million admissions between 2002-2011, with a high average age of patients of 82 who are predominantly female and white. Approximately $27,500 per patient was spent in the first 90 days post-admission, with inpatient spending accounting for the majority of this amount (≈$16,000). The authors argue initially that the higher 90-day spending in some hospitals only produces modestly lower mortality rates. Spending over 1 year is estimated to cost more than $300,000 per life year, which the authors use to argue that current spending levels do not lead to improved outcomes. But when the authors dig deeper, it seems clear there is an association between hospitals who have higher spending on inpatient care and reduced mortality, approximately 10% lower. This leads to the authors turning their attention to post-acute care as their main target of reducing waste and they find an association between mortality and patients receiving specialised nursing care. However, this target seems somewhat strange to me, as post-acute care is not controlled for in the same way as their initial, insightful approach to randomising based on ambulatory care. I imagine those in such care are likely to be a different mix from those receiving other types of care post 90 days after the initial event. I feel there really is not enough to go on to make recommendations about specialist nursing care being the key waste driver from their analysis as it says nothing, beyond mortality, about the quality of care these elderly patients are receiving in the specialist nurse facilities. After reading this paper, one way I would suggest in reducing inefficiency related to their primary analysis could be to send patients to the most appropriate hospital for what the patient needs in the first place, which seems difficult given the complexity of the private and hospital provided mix of ambulatory care offered in the US currently.

Population health and the economy: mortality and the Great Recession in Europe. Health Economics [PubMed] Published 27th March 2017

Understanding how economic recessions affect population health is of great research interest given the recent global financial crisis that led to the worst downturn in economic performance in the West since the 1930s. This study uses data from 27 European countries between 2004 and 2010 collected by WHO and the World Bank to study the relationship between economic performance and population health by comparing national unemployment and mortality rates before and after 2007. Regression analyses appropriate for time-series data are applied with a number of different specifications applied. The authors find that the more severe the economic downturn, the greater the increase in life expectancy at birth. Additional specific health mortality rates follow a similar trend in their analysis, with largest improvements observed in countries where the severity of the recession was the highest. The only exception the authors note is data on suicide, where they argue the relationship is less clear, but points towards higher rates of suicide with greater unemployment. The message the authors were trying to get across in this study was not very clear throughout most of the paper and some lay readers of the abstract alone could easily be misled in thinking recessions themselves were responsible for better population health. Mortality rates fell across all six years, but at a faster rate in the recession years. Although the results appeared consistent across all models, question marks remain for me in terms of their initial variable selection. Although the discussion mentions evidence that suggests health care may not have a short-term effect on mortality, they did not consider any potential lagged effect record investment in healthcare as a proportion of GDP up until 2007 may have had on the initial recession years. The authors rule out earlier comparisons with countries in the post-Soviet era but do not consider the effect of recent EU accession for many of the countries and more regulated national policies as a consequence. Another issue is the potential of countries’ mortality rates to improve, where countries with existing lower life expectancy have more room for moving in the right direction. However, one interesting discussion point raised by the authors in trying to explain their findings is the potential impact of economic activity on pollution levels and knock-on health impacts from this (and to a lesser extent occupational health levels), that may have some plausibility in better mortality rates linked to physical health during recessions.



How to cite The Academic Health Economists’ Blog

Occasionally we get emails from people who would like to cite our blog posts. Usually, these requests are framed as ‘is this going to be published in a journal?’. It’s no surprise that people are more comfortable citing the traditional academic literature. But researchers are increasingly citing blog posts. Indeed, some of our blog posts have been cited in published academic literature.

There are plenty of guides out there for citing blog posts. You may like to refer to them for specific formatting styles. Cite This For Me is a useful tool for generating references in a variety of styles. Here I’d like to provide a few specific recommendations for citing posts from this blog.

1. Cite the author

Our blog posts are written by lots of different authors, not by ‘the blog’. The author’s name – assuming they have not claimed anonymity – will appear at the top of the blog post. Let’s take a recent example. To start with, your citation should look something like:

Watson, S. (2017). Variations in NHS admissions at a glance. The Academic Health Economists’ Blog. Available at: [Accessed 8 Mar. 2017].

2. Use our ISSN

As of this week, the blog now has its own International Standard Serial Number (ISSN). This number uniquely identifies and distinguishes the blog. Our ISSN is 2514-3441. You can find it at the bottom of the sidebar and on our About page. So your citation could become:

Watson, S. (2017). Variations in NHS admissions at a glance. The Academic Health Economists’ Blog (ISSN 2514-3441). Available at: [Accessed 8 Mar. 2017].

3. Use WebCite

Unlike journal articles, websites can change. One of our authors could (in principle) completely change the content of their blog post after publishing it. More importantly, it is possible that our URLs may change in the future. If this were to happen, the link in the reference above would become redundant and the citation would not be useful to readers. What needs to be cited, therefore, is the blog post at the time at which you accessed it. Enter WebCite. WebCite is a service that archives a webpage and provides a permanent link for citation. This can be achieved by completing an archiving form. Our citation becomes:

Watson, S. (2017). Variations in NHS admissions at a glance. The Academic Health Economists’ Blog (ISSN 2514-3441). Available at: [Accessed 8 Mar. 2017]. (Archived by WebCite® at

4. Check the comments

Finally, authors may choose to subsequently publish their blog post elsewhere in another format or to upload it to a service such as figshare in order to obtain a DOI. Check the comments below a blog post to see if this is the case as there may be an alternative source that you might prefer to cite.

But as ever, if you’re struggling, get in touch.


Sam Watson’s journal round-up for 6th March 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

It’s good to be first: order bias in reading and citing NBER working papers. The Review of Economics and Statistics [RePEcPublished 23rd February 2017

Each week one of the authors at this blog choose three or four recently published studies to summarise and briefly discuss. Making this choice from the many thousands of articles published every week can be difficult. I browse those journals that publish in my area and search recently published economics papers on PubMed and Econlit for titles that pique my interest. But this strategy is not without its own flaws as this study aptly demonstrates. When making a choice among many alternatives, people aren’t typically presented with a set of choices, rather a list. This arises in healthcare as well. In an effort to promote competition, at least in the UK, patients are presented with a list of possible of providers and some basic information about those providers. We recently covered a paper that explored this expansion of choice ‘sets’ and investigated its effects on quality. We have previously criticised the use of such lists. People often skim these lists relying on simple heuristics to make choices. This article shows that for the weekly email of new papers published by the National Bureau of Economic Research (NBER), being listed first leads to an increase of approximately 30% in downloads and citations, despite the essentially random ordering of the list. This is certainly not the first study to illustrate the biases in human decision making, but it shows that this journal round-up may not be a fair reflection of the literature, and providing more information about healthcare providers may not have the impact on quality that might be hypothesised.

Economic conditions, illicit drug use, and substance use disorders in the United States. Journal of Health Economics [PubMed] Published March 2017

We have featured a large number of papers about the relationship between macroeconomic conditions and health and health-related behaviours on this blog. It is certainly one of the health economic issues du jour and one we have discussed in detail. Generally speaking, when looking at an aggregate level, such as countries or states, all-cause mortality appears to be pro-cyclical: it declines in economic downturns. Whereas an examination at individual or household levels suggest unemployment and reduced income is generally bad for health. It is certainly possible to reconcile these two effects as any discussion of Simpson’s paradox will reveal. This study takes the aggregate approach to looking at US state-level unemployment rates and their relationship with drug use. It’s relevant to the discussion around economic conditions and health; the US has seen soaring rates of opiate-related deaths recently, although whether this is linked to the prevailing economic conditions remains to be seen. Unfortunately, this paper predicates a lot of its discussion about whether there is an effect on whether there was statistical significance, a gripe we’ve contended with previously. And there are no corrections for multiple comparisons, despite the well over 100 hypothesis tests that are conducted. That aside, the authors conclude that the evidence suggests that use of ecstasy and heroin is procyclical with respect to unemployment (i.e increase with greater unemployment) and LSD, crack cocaine, and cocaine use is counter-cyclical. The results appear robust to the model specifications they compare, but I find it hard to reconcile some of the findings with the prior information about how people actually consume drugs. Many drugs are substitutes and/or compliments for one another. For example, many heroin users began using opiates through abuse of prescription drugs such as oxycodone but made the switch as heroin is generally much cheaper. Alcohol and marijuana have been shown to be substitutes for one another. All of this suggesting a lack of independence between the different outcomes considered. People may also lose their job because of drug use. Taken all together I remain a little sceptical of the conclusions from the study, but it is nevertheless an interesting and timely piece of research.

Child-to-adult neurodevelopmental and mental health trajectories after early life deprivation: the young adult follow-up of the longitudinal English and Romanian Adoptees study. The Lancet [PubMedPublished 22nd February 2017

Does early life deprivation lead to later life mental health issues? A question that is difficult to answer with observational data. Children from deprived backgrounds may be predisposed to mental health issues, perhaps through familial inheritance. To attempt to discern whether deprivation in early life is a cause of mental health issues this paper uses data derived from a cohort of Romanian children who spent time in one of the terribly deprived institutions of Ceaușescu’s Romania and who were later adopted by British families. These institutions were characterised by poor hygiene, inadequate food, and lack of social or educational stimulation. A cohort of British adoptees was used for comparison. For children who spent more than six months in one of the deprived institutions, there was a large increase in cognitive and social problems in later life compared with either British adoptees or those who spent less than six months in an institution. The evidence is convincing, with differences being displayed across multiple dimensions of mental health, and a clear causal mechanism by which deprivation acts. However, for this and many other studies that I write about on this blog, a disclaimer might be needed when there is significant (pun intended) abuse and misuse of p-values. Ziliak and McClosky’s damning diatribe on p-values, The Cult of Statistical Significance, presents examples of lists of p-values being given completely out of context, with no reference to the model or hypothesis test they are derived from, and with the implication that they represent whether an effect exists or not. This study does just that. I’ll leave you with this extract from the abstract:

Cognitive impairment in the group who spent more than 6 months in an institution remitted from markedly higher rates at ages 6 years (p=0·0001) and 11 years (p=0·0016) compared with UK controls, to normal rates at young adulthood (p=0·76). By contrast, self-rated emotional symptoms showed a late onset pattern with minimal differences versus UK controls at ages 11 years (p=0·0449) and 15 years (p=0·17), and then marked increases by young adulthood (p=0·0005), with similar effects seen for parent ratings. The high deprivation group also had a higher proportion of people with low educational achievement (p=0·0195), unemployment (p=0·0124), and mental health service use (p=0·0120, p=0·0032, and p=0·0003 for use when aged <11 years, 11–14 years, and 15–23 years, respectively) than the UK control group.