Sam Watson’s journal round-up for 23rd January 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Short-term and long-term effects of GDP on traffic deaths in 18 OECD countries, 1960–2011. Journal of Epidemiology and Community Health [PubMedPublished February 2017

Understanding the relationships between different aspects of the economy or society in the aggregate can reveal to us knowledge about the world. However, they are more complicated than analyses of individuals who either did or did not receive an intervention, as the objects of aggregate analyses don’t ‘exist’ per se but are rather descriptions of average behaviour of the system. To make sense of these analyses an understanding of the system is therefore required. On these grounds I am a little unsure of the results of this paper, which estimates the effect of GDP on road traffic fatalities in OECD countries over time. It is noted that previous studies have shown that in the short-run, road traffic deaths are procyclical, but in the long-run they have declined, likely as a result of improved road and car safety. Indeed, this is what they find with their data and models. But, what does this result mean in the long-run? Have they picked up anything more than a correlation with time? Time is not included in the otherwise carefully specified models, so is the conclusion to policy makers, ‘just keep doing what you’re doing, whatever that is…’? Models of aggregate phenomena can be among the most interesting, but also among the least convincing (my own included!). That being said, this is better than most.

Sources of geographic variation in health care: Evidence from patient migration. Quarterly Journal of Economics [RePEcPublished November 2016

There are large geographic differences in health care utilisation both between countries and within countries. In the US, for example, the average Medicare enrollee spent around $14,400 in 2010 in Miami, Florida compared with around $7,800 in Minneapolis, Minnesota, even after adjusting for demographic differences. However, higher health care spending is generally not associated with better health outcomes. There is therefore an incentive for policy makers to legislate to reduce this disparity, but what will be effective depends on the causes of the variation. On one side, doctors may be dispensing treatments differently; for example, we previously featured a paper looking at the variation in overuse of medical testing by doctors. On the other side, patients may be sicker or have differing preferences on the intensity of their treatment. To try and distinguish between these two possible sources of variation, this paper uses geographical migration to look at utilisation among people who move from one area to another. They find that (a very specific) 47% of the difference in use of health care is attributable to patient characteristics. However, I (as ever) remain skeptical: a previous post brought up the challenge of ‘transformative treatments’, which may apply here as this paper has to rely on the assumption that patient preferences remain the same when they move. If moving from one city to another changes your preferences over healthcare, then their identification strategy no longer works well.

Seeing beyond 2020: an economic evaluation of contemporary and emerging strategies for elimination of Trypanosoma brucei gambiense. Lancet Global Health Published November 2016

African sleeping sickness, or Human African trypanosomiasis, is targeted for eradication in the next decade. However, the strategy to do so has not been determined, nor whether any such strategy would be a cost-effective use of resources. This paper aims to model all of these different strategies to estimate incremental cost-effectiveness threshold (ICERs). Infectious disease presents an interesting challenge for health economic evaluation as the disease transmission dynamics need to be captured over time, which they achieve here with a ‘standard’ epidemiological model using ordinary differential equations. To reach elimination targets, an approach incorporating case detection, treatment, and vector control would be required, they find.

A conceptual introduction to Hamiltonian Monte Carlo. ArXiv Published 10th January 2017

It is certainly possible to drive a car without understanding how the engine works. But if we want to get more out of the car or modify its components then we will have to start learning some mechanics. The same is true of statistical software. We can knock out a simple logistic regression without ever really knowing the theory or what the computer is doing. But this ‘black box’ approach to statistics has clear problems. How do we know the numbers on the screen mean what we think they mean? What if it doesn’t work or if it is running slowly, how do we diagnose the problem? Programs for Bayesian inference can sometimes seem even more opaque than others: one might well ask what are those chains actually exploring, if it’s even the distribution of interest. Well, over the last few years a new piece of kit, Stan, has become a brilliant and popular tool for Bayesian inference. It achieves fast convergence with less autocorrelation between chains and so it achieves a high effective sample size for relatively few iterations. This is due to its implementation of Hamiltonian Monte Carlo. But it’s founded in the mathematics of differential geometry, which has restricted the understanding of how it works to a limited few. This paper provides an excellent account of Hamiltonian Monte Carlo, how it works, and when it fails, all replete with figures. While it’s not necessary to become a theoretical or computational statistician, it is important, I think, to have a grasp of what the engine is doing if we’re going to play around with it.

Credits

Advertisements

Brent Gibbons’s journal round-up for 12th December 2016

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

As the U.S. moves into a new era with the recent election results, Republicans will have a chance to modify or repeal the Affordable Care Act. The Affordable Care Act (ACA), also called Obamacare, is a comprehensive health reform that was enacted on the 23rd of March, 2010, that helped millions of uninsured individuals and families gain coverage through new private insurance coverage and through expanded Medicaid coverage for those with very low income. The ACA has been nothing short of controversial and has often been at the forefront of partisan divides. The ACA was an attempt to fill the insurance coverage gaps of the patchwork American health insurance system that was built on employer-sponsored insurance (ESI) and a mix of publicly funded programs for various vulnerable subpopulations. The new administration and republican legislators are promising to repeal the law, at least in part, and have suggested plans that will re-emphasize the private insurance model based on ESI. For this reason, the following articles selected for this week’s round-up highlight different aspects of ESI.

The Mental Health Parity and Addiction Equity Act evaluation study: Impact on specialty-behavioral health utilization and expenditures among “carve-out” enrollees. Journal of Health Economics [PubMed] Published December 2016

Behavioral health services have historically been covered at lower levels and with more restrictions by ESI than physical health services. Advocates for behavioral health system reform have pushed for equal coverage of behavioral health services for decades. In 2008, the Mental Health Parity and Addiction Equity Act (MHPAEA) was passed with a fairly comprehensive set of rules for how behavioral health coverage would need to be comparable to medical/surgical coverage, including for ESI. This first article in our round-up examines the impact of this law on utilization and expenditures of behavioral health services in ESI plans. The authors use an individual-level interrupted time series design using panel data with monthly measures of outcomes. Administrative claims and enrollment data are used from a large private insurance company that provides health insurance for a number of large employers in the years 2008 – 2013. A segmented regression analysis is used in order to measure the impact of the law at two different time points, first in 2010 for what is considered a transition year, and then in the 2011 – 2013 period, both compared to the pre-MHPAEA time period, 2008 – 2009. Indicator variables are used for the different periods as well as spline variables to measure the change in level and slope of the time trends, controlling for other explanatory variables. Results suggest that MHPAEA had little effect on utilization and total expenditures, but that out-of-pocket expenditures were shifted from the patient to the health plan. For patients who had positive expenditures, there was a post-MHPAEA level increase in health plan expenditures of $58.03 and a post-MHPAEA level decrease in out-of-pocket expenditure of $21.58, both per-member-per-month. To address worries of confounding time trends, the authors performed several sensitivity analyses, including a difference-in-difference (DID) analysis that used states that already had strict parity legislation as a comparison population. The authors also examined those with a bipolar or schizophrenia disorder to test the hypothesis that impacts may be stronger for individuals with more severe conditions. Sensitivity analyses tended to result in larger p-values. These results, which were examined at the mean, are consistent with reports that the primary change in behavioral health coverage in ESI was the elimination of treatment limits. In addition to using a sensitivity analysis with individuals with bipolar and schizophrenia, it would have been interesting to see impacts for individuals defined as “high-utilizers”. It would also have been nice to see a longer pre-MHPAEA time period since insurers could have adjusted plans prior to the 2010 effective date.

Health plan type variations in spells of health-care treatment. American Journal of Health Economics [RePEcPublished 12th October 2016

Health care costs in the U.S. were roughly 17.8 percent of the GDP in 2015 and attempts to rein in health insurance costs have largely proved elusive. Different private insurance health plans have tried to rein in costs through different plan types that have a mix of supply-side mechanisms and demand-side mechanisms. Two recent plan types that have emerged are exclusive provider organizations (EPOs) and consumer-driven/high-deductible health plans (CDHPs). EPOs use a more narrowly restricted network of providers that agree to lower payments and presumably also deliver quality care while CDHPs give patients broader networks but shift cost-sharing to patients. EPOs therefore are more focused on supply-side mechanisms of cost reduction, while CDHPs emphasize demand-side incentives to reduce costs. Ellis and Zhu use a large ESI claims-based dataset to examine the impact of these two health plan types and to try to answer whether supply-side or demand-side mechanisms of cost reduction are more effective. The authors present an extremely extensive analysis that is really worth reading. They use a technique for modeling periods of care, called treatment “spells” that is a mix of monthly treatment periods and episode-based models of care. Utilization and expenditures are examined in the context of these treatment “spells” for the different health plan types. A 2SLS regression model is used that controls for endogenous plan choice in the first-stage. The predicted probabilities from plan choice are used as an instrument in the second stage along with a number of controls, including risk-adjustment techniques and individual fixed effects. The one drawback in using the predicted probabilities as the sole instrument is it is not possible to perform an exclusion test. The results, however, suggest that neither of the new plan types performs better than a standardly used health plan. EPOs have the lowest overall spending, but are not significantly different than the standard plan type, and CDHPs have 16 percent higher spending than the standard plan type. The CDHPs in particular have not been studied carefully and these results suggest that previous research on CDHPs found cost-savings due to younger and healthier patients and not because of plan type effects. There are also worries with high deductible plans that patients may elect to forgo necessary healthcare services.

The financial burdens of high-deductible plans. Health Affairs [PubMed] Published December 2016

Having discussed the consumer-directed/high deductible health plans, this third journal article looks at the Medical Expenditure Panel Survey (MEPS) data to examine the burden high deductible health plans place on individuals and families with low incomes. High deductible health plans like the CDHPs are increasingly offered. High deductible plans are sometimes paired with the option to use a flexible spending account (FSA). An FSA gives the patient the option to set aside money from her salary or paycheck that can only be used for healthcare costs, with the benefit that the money set aside will not be subject to various income taxes. The benefit of the high deductible plan is supposed to be lower premiums and the possibility of saving money through the FSA, if that option is available. Yet descriptive analyses using MEPS data from 2011 – 2013 from ESI plans show that high deductible plans impose a particularly high burden on individuals with family incomes below 250 percent of the poverty line. Specifically, the authors found that 29.1 percent of individuals with high deductible plans had financial costs exceeding 20 percent of family income, compared to 20.6 percent of individuals with low deductible plans. For individuals with family income greater than 400 percent of the poverty line, financial burden was not different for high deductible plans compared to other plan types. Yet worryingly, individuals with low incomes were just as likely to have high deductible plans as individuals with high incomes.

Credits

Sharing the burden of healthcare: providing care to our sickest patients

One of the major challenges to affordable, universal health insurance is the high cost of providing care to the sickest patients. According to Roy Vaughn, senior vice president at BlueCross BlueShield of Tennessee, “just 5 percent of the company’s marketplace customers had accounted for nearly 75 percent of its claims costs.” What is the cost of healthcare for the typical person in the United States?Distribution of per capita US health expenditures 2012

Data from 2012, the last year for which a full analysis is available, presents a complex and confusing picture. The graph above shows per capita expenditures by percentile starting with the highest per capita expenditure. 10% face expenditures of at least $10,250. The median per capita expenditure was $854. The mean average per capita expenditure was $4309 – five times the median – and “the top 1 percent ranked by their healthcare expenses accounted for 22.7 percent of total healthcare expenditures with an annual mean expenditure of $97,956″. In brief, there is no typical person: since the bottom 50% accounted for 2.7% of total expenditures, the average per capita expenditure of the top 1% was 420 times that of the bottom 50%. There really is no typical person in terms of healthcare expenditures.

Pareto/ power law distribution of healthcare costs

This extreme distribution of healthcare costs (approximately an “80/20”, Pareto/ power law distribution) poses a major challenge to providing universal healthcare through traditional insurance models based upon risk pooling. Prior to the Affordable Care Act (ACA), the US health insurance industry addressed these challenges with risk selection – adjusting premiums or denying insurance to patients with high predicted risks, such as those with pre-existing conditions, and imposing caps on annual and/or lifetime benefits, much like the way the auto insurance industry sets premiums and limits benefits to address extreme differences in projected driver risks. Come back tomorrow for another blog post with more technical details about the Pareto distribution and healthcare costs.

Risk selection is illegal but prevalent

The ACA makes both caps on benefits and risk selection based upon pre-existing conditions illegal. In particular, US insurance carriers are required to provide coverage to all, at rates independent of pre-existing conditions, a requirement which President-Elect Donald Trump would like to keep.

However, the extreme distribution of healthcare costs means that “Targeting the highest spenders represents the greatest opportunity to have a significant impact on overall spending”; an opportunity for insurance carriers as well as for public policy. Moreover, there are good predictors for high spending: age and end of life, chronic conditions, and high spending in a previous year. For example 44.8% of the top decile in 2008 healthcare expenditures “retained this top decile ranking with respect to their 2009 healthcare expenditures”; a fact cited in an extensive Forbes report. Swiss and Dutch experience found risk selection prevalent and persistent. However, with every adult paying the same premium – within a given fund for the same type of contract – but expected healthcare expenditure (HCE) varying widely, strong incentives for risk selection are created in the absence of an adequate risk adjustment scheme. Although risk selection is illegal, it is prevalent. Swiss conglomerates of insurance carriers have been reported to achieve risk selection by assigning applicants to “specific carriers based on their risk profiles.”

Removing the economic incentives for risk selection

There is one clear way to avoid built-in economic incentives for risk selection (incentives which seem to drive insurance company behavior); that is, a single payer system, universally or as excess coverage for significant, predictable expenses. The United States now has several parallel single payer systems, namely Medicare for the elderly, Medicaid for the very poor and CHIP for children; thus, in effect, a public/private partnership in healthcare. These pre-existing single-payer systems might serve as models for a more inclusive US single payer system. Alternatively, the United States might act as an insurer of last resort, providing umbrella insurance covering individual expenses above some relatively high limit, or for costly but treatable conditions using the End Stage Renal Disease (ESRD) Program, passed in 1972 as a model. This approach would also remove extreme costs from the health insurance risk pool, as both Medicare and the ESRD Program do now, by providing near-universal coverage for our sickest patients outside the private insurance system (elderly US citizens and those with severe chronic kidney disease, respectively).

Tomorrow I will return to the Pareto-like distribution of healthcare expenditures and its consequences for any competitive insurance program. But for now, a few conclusions. Medicare and the ESRD program provide models for a smooth transition from health insurance pre-ACA with its caps and limitations to a more universal system. Medicare can be expanded to a broader public alternative. Universal coverage for additional treatable but high-risk conditions can be modeled on the ESRD program. These steps should provide the basis for further evolution of the present public/private partnership into a more universal, more cost-effective system.

In my opinion, the extreme distribution of healthcare expenditures and the ability to perform risk selection, even though illegal, present a strong, essentially irrefutable argument for a single payer system; either overall, or for chronic conditions and expenditures predictable through risk selection. In the US, Medicare and the ESRD program provide illustrative, successful and useful models.

Credits