Chris Sampson’s journal round-up for 27th August 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Ethically acceptable compensation for living donations of organs, tissues, and cells: an unexploited potential? Applied Health Economics and Health Policy [PubMed] Published 25th August 2018

Around the world, there are shortages of organs for transplantation. In economics, the debate around the need to increase organ donation can be frustratingly ignorant of ethical and distributional concerns. So it’s refreshing to see this article attempting to square concerns about efficiency and equity. The authors do so by using a ‘spheres of justice’ framework. This is the idea that different social goods should be distributed according to different principles. So, while we might be happy for brocolli and iPhones to be distributed on the basis of free exchange, we might want health to be distributed on the basis of need. The argument can be extended to state that – for a just situation to prevail – certain exchanges between these spheres of justice (e.g. health for iPhones) should never take place. This idea might explain why – as the authors demonstrate with a review of European countries – policy tends not to allow monetary compensation for organ donation.

The paper cleverly sets out to taxonomise monetary and non-monetary reimbursement and compensation with reference to individuals’ incentives and the spheres of justice principles. From this, the authors reach two key conclusions. Firstly, that (monetary) reimbursement of donors’ expenses (e.g. travel costs or lost earnings) is ethically sound as this does not constitute an incentive to donate but rather removes existing disincentives. Secondly, that non-monetary compensation could be deemed ethical.

Three possible forms of non-monetary compensation are discussed: i) prioritisation, ii) free access, and iii) non-health care-related benefits. The first could involve being given priority for receiving organs, or it could extend to the jumping of other health care waiting lists. I think this is more problematic than the authors let on because it asserts that health care should – at least in part – be distributed according to desert rather than need. The second option – free access – could mean access to health care that people would otherwise have to pay for. The third option could involve access to other social goods such as education or housing.

This is an interesting article and an enjoyable read, but I don’t think it provides a complete solution. Maybe I’m just too much of a Marxist, but I think that this – as all other proposals – fails to distribute from each according to ability. That is, we’d still expect non-monetary compensation to incentivise poorer (and on average less healthy) people to donate organs, thus exacerbating health inequality. This is because i) poorer people are more likely to need the non-monetary benefits and ii) we live in a capitalist society in which there is almost nothing that money can’t by and which is strictly non-monetary. Show me a proposal that increases donation rates from those who can most afford to donate them (i.e. the rich and healthy).

Selecting bolt-on dimensions for the EQ-5D: examining their contribution to health-related quality of life. Value in Health Published 18th August 2018

Measures such as the EQ-5D are used to describe health-related quality of life as completely and generically as possible. But there is a trade-off between completeness and the length of the questionnaire. Necessarily, there are parts of the evaluative space that measures will not capture because they are a simplification. If the bit they’re missing is important to your patient group, that’s a problem. You might fancy a bolt-on. But how do we decide which areas of the evaluative space should be more completely included in the measure? Which bolt-ons should be used? This paper seeks to provide means of answering these questions.

The article builds on an earlier piece of work that was included in an earlier journal round-up. In the previous paper, the authors used factor analysis to identify candidate bolt-ons. The goal of this paper is to outline an approach for specifying which of these candidates ought to be used. Using data from the Multi-Instrument Comparison study, the authors fit linear regressions to see how well 37 candidate bolt-on items explain differences in health-related quality of life. The 37 items correspond to six different domains: energy/vitality, satisfaction, relationships, hearing, vision, and speech. In a second test, the authors explored whether the bolt-on candidates could explain differences in health-related quality of life associated with six chronic conditions. Health-related quality of life is defined according to a visual analogue scale, which notably does not correspond to that used in the EQ-5D but rather uses a broader measure of physical, mental, and social health.

The results suggest that items related to energy/vitality, relationships, and satisfaction explained a significant part of health-related quality of life on top of the existing EQ-5D dimensions. The implication is that these could be good candidates for bolt-ons. The analysis of the different conditions was less clear.

For me, there’s a fundamental problem with this study. It moves the goals posts. Bolt-ons are about improving the extent to which a measure can more accurately represent the evaluative space that it is designed to characterise. In this study, the authors use a broader definition of health-related quality of life that – as far as I can tell – the EQ-5D is not designed to capture. We’re not dealing with bolt-ons, we’re dealing with extensions to facilitate expansions to the evaluative space. Nevertheless, the method could prove useful if combined with a more thorough consideration of the evaluative space.

Sources of health financing and health outcomes: a panel data analysis. Health Economics [PubMed] [RePEc] Published 15th August 2018

There is a growing body of research looking at the impact that health (care) spending has on health outcomes. Usually, these studies don’t explicitly look at who is doing the spending. In this study, the author distinguishes between public and private spending and attempts to identify which type of spending (if either) results in greater health improvements.

The author uses data from the World Bank’s World Development Indicators for 1995-2014. Life expectancy at birth is adopted as the primary health outcome and the key expenditure variables are health expenditure as a share of GDP and private health expenditure as a share of total health expenditure. Controlling for a variety of other variables, including some determinants of health such as income and access to an improved water source, a triple difference analysis is described. The triple difference estimator corresponds to the difference in health outcomes arising from i) differences in the private expenditure level, given ii) differences in total expenditure, over iii) time.

The key finding from the study is that, on average, private expenditure is more effective in increasing life expectancy at birth than public expenditure. The author also looks at government effectiveness, which proves crucial. The finding in favour of private expenditure entirely disappears when only countries with effective government are considered. There is some evidence that public expenditure is more effective in these countries, and this is something that future research should investigate further. For countries with ineffective governments, the implication is that policy should be directed towards increasing overall health care expenditure by increasing private expenditure.


Sam Watson’s journal round-up for 12th March 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

[While the journal round-up is not on strike this week, academics and other university staff across the UK continue to be. Please support these staff members and the university sector that produces much of the great research we feature on this blog.]

How does household income affect child personality traits and behaviors? American Economic Review [RePEcPublished February 2018

The intergenerational transmission of poor social and health outcomes and its remediation has long been of concern to policy makers and economists alike. A popular hypothesis to explain this phenomenon is that of fetal origins: the nine months in the womb are perhaps the most important in determining a person’s health over their lifetime. We have featured numerous papers on this blog looking at the impact of in utero conditions on infant, child, and adult outcomes. This hypothesis though leaves a sense of pessimism since if this generational link is rooted in biology then it is not likely to be modifiable by any intervention. Studies of institutional interventions in schools and the health care system have shown that the health of  children from impoverished households can be improved. But what about the effects of simply improving the material conditions of those households? Would this have an effect? This study uses a longitudinal dataset of children in North Carolina, USA which oversampled children from Native American families who, in the middle of the period of observation, began to receive an unconditional cash transfer from the tribal government funded by casino revenues. A difference-in-difference-in-differences model is used with the relevant differences being: before v. after, younger cohorts v. older cohorts (older children’s households did not receive the cash while they were children), and Native American v non-Native American. An ‘event study analysis’ is also used, which takes into account time from the intervention. (This is the exact same method as another recently featured paper on this blog – perhaps sign of the growing popularity of such techniques). Average annual income increased by around $3,500 per year. Quite clear improvements in a range of psychological traits are estimated from the models including increases in conscientiousness and agreeableness, and declines in emotional and behavioural disorders. Potential mediating mechanisms for these changes are explored and uncertain evidence is shown indicating improved parental supervision and interaction and a reduction in parental mental health care seeking (they plot 90% confidence intervals which appear  ‘statistically significant’ where 95% confidence intervals clearly would not be – however, the lack of significance stars and p-values is refreshing). Such evidence should weigh heavily on policy makers’ minds when implementing reductions to social assistance programs and household income.

Adaptation or recovery after health shocks? Evidence using subjective and objective health measures. Health Economics. [PubMedPublished March 2018.

Hedonic adaptation is a well evidenced phenomenon in health economics and related fields. Individuals can get used to health conditions and adverse circumstances, such as amputation or blindness, and recover much of their pre-illness quality of life. This makes it hard for healthy people to judge the quality of life of these conditions and is one of the reasons for the divergence in preferences over health states depending on who you ask. This paper takes an interesting approach to looking at adaptation by asking whether the improvement in someone’s subjective assessment of their own life expectancy after a serious illness is reflective of actual recovery or is in fact due to the optimism brought on by adaptation. Typically, beliefs about life expectancy are found to accord well with actuarial assessments of life expectancy, but little is known about how this relates to serious illness. This study suggests that subjective assessments of mortality risk do drop with cancer, stroke, and myocardial infarction in line with changes to objective risk of death. However, these subjective assessments generally return to their pre-illness levels, which doesn’t reflect the continued increase in risk actually faced by these people. An explanation for this is hedonic adaptation – people perhaps end up feeling as well as they did before even if they are not. It’s hard to say though if there’s a survivorship bias in favour of the optimists.

The local influence of pioneer investigators on technology adoption: Evidence from new cancer drugs. Review of Economics and Statistics. [RePEcPublished March 2018.

Technology diffusion typically shows a strong spatial pattern. If you know someone who has adopted a new technology, you are more likely to do the same yourself. But what about in medicine – do doctors also adopt similar patterns of prescribing new drugs? In the UK, we might think such patterns are unlikely as doctors are not free to prescribe what they like since they are restricted generally to what the NHS will reimburse. New technologies have to be first approved on the basis of being demonstrably cost-effective. But in the United States doctors are freer to prescribe what they like. While this has benefits, it also leads to adoption of cost-ineffective interventions or persistence in prescribing sub-optimal treatments. If the diffusion of new treatments is based upon social and professional spatial networks then one might expect the epicentre to be where the drug was trialled, the PI may well also be the loudest cheerleader for the new drug should it be shown to be effective. Indeed if a ‘superstar’ researcher is involved with the development of a drug this may attract more attention to it still. The key finding from this study in the US is that patients treated in the hospital market where the first author of the paper reporting the results of the main clinical trial of a drug were 36% more likely to receive the drug than elsewhere in the first two years. This is generally beneficial to patients in those areas, particularly since the average survival benefit to those patients is larger than is attributable to the drug itself, which may suggest that doctors with local information are better at selecting which patients will benefit from a treatment. However, with some of the problems arising from reporting bias, p-values, and the like patients may also be getting a worse deal should the drug not be as good as claimed.


Chris Sampson’s journal round-up for 5th March 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Healthy working days: the (positive) effect of work effort on occupational health from a human capital approach. Social Science & Medicine Published 28th February 2018

If you look at the literature on the determinants of subjective well-being (or happiness), you’ll see that unemployment is often cited as having a big negative impact. The same sometimes applies for its impact on health, but here – of course – the causality is difficult to tease apart. Then, in research that digs deeper, looking at hours worked and different types of jobs, we see less conclusive results. In this paper, the authors start by asserting that the standard approach in labour economics (on which I’m not qualified to comment) is to assume that there is a negative association between work effort and health. This study extends the framework by allowing for positive effects of work that are related to individuals’ characteristics and working conditions, and where health is determined in a Grossman-style model of health capital that accounts for work effort in the rate of health depreciation. This model is used to examine health as a function of work effort (as indicated by hours worked) in a single wave of the European Working Conditions Survey (EWCS) from 2010 for 15 EU member states. Key items from the EWCS included in this study are questions such as “does your work affect your health or not?”, “how is your health in general?”, and “how many hours do you usually work per week?”. Working conditions are taken into account by looking at data on shift working and the need to wear protective equipment. One of the main findings of the study is that – with good working conditions – greater work effort can improve health. The Marxist in me is not very satisfied with this. We need to ask the question, compared to what? Working fewer hours? For most people, that simply isn’t an option. Aren’t the people who work fewer hours the people who can afford to work fewer hours? No attention is given to the sociological aspects of employment, which are clearly important. The study also shows that overworking or having poorer working conditions reduces health. We also see that, for many groups, longer hours do not negatively impact on health until we reach around 120 hours a week. This fails a good sense check. Who are these people?! I’d be very interested to see if these findings hold for academics. That the key variables are self-reported undermines the conclusions somewhat, as we can expect people to adjust their expectations about work effort and health in accordance with their colleagues. It would be very difficult to avoid a type 2 error (with respect to the negative impact of effort on health) using these variables to represent health and the role of work effort.

Agreement between retrospectively and contemporaneously collected patient-reported outcome measures (PROMs) in hip and knee replacement patients. Quality of Life Research [PubMed] Published 26th February 2018

The use of patient-reported outcomes (PROMs) in elective care in the NHS has been a boon for researchers in our field, providing before-and-after measurement of health-related quality of life so that we can look at the impact of these interventions. But we can’t do this in emergency care because the ‘before’ is never observed – people only show up when they’re in the middle of the emergency. But what if people could accurately recall their pre-emergency health state? There’s some evidence to suggest that people can, so long as the recall period is short. This study looks at NHS PROMs data (n=443), with generic and condition-specific outcomes collected from patients having hip or knee replacements. Patients included in the study were additionally asked to recall their health state 4 weeks prior to surgery. The authors assess the extent to which the contemporary PROM measurements agree with the retrospective measurements, and the extent to which any disagreement relates to age, socioeconomic status, or the length of time to recall. There wasn’t much difference between contemporary and retrospective measurements, though patients reported slightly lower health on the retrospective questionnaires. And there weren’t any compelling differences associated with age or socioeconomic status or the length of recall. These findings are promising, suggesting that we might be able to rely on retrospective PROMs. But the elective surgery context is very different to the emergency context, and I don’t think we can expect the two types of health care to impact recollection in the same way. In this study, responses may also have been influenced by participants’ memories of completing the contemporary questionnaire, and the recall period was very short. But the only way to find out more about the validity of retrospective PROM collection is to do more of it, so hopefully we’ll see more studies asking this question.

Adaptation or recovery after health shocks? Evidence using subjective and objective health measures. Health Economics [PubMed] Published 26th February 2018

People’s expectations about their health can influence their behaviour and determine their future health, so it’s important that we understand people’s expectations and any ways in which they diverge from reality. This paper considers the effect of a health shock on people’s expectations about how long they will live. The authors focus on survival probability, measured objectively (i.e. what actually happens to these patients) and subjectively (i.e. what the patients expect), and the extent to which the latter corresponds to the former. The arguments presented are couched within the concept of hedonic adaptation. So the question is – if post-shock expectations return to pre-shock expectations after a period of time – whether this is because people are recovering from the disease or because they are moving their reference point. Data are drawn from the Health and Retirement Study. Subjective survival probability is scaled to whether individuals expect to survive for 2 years. Cancer, stroke, and myocardial infarction are the health shocks used. The analysis uses some lagged regression models, separate for each of the three diagnoses, with objective and subjective survival probability as the dependent variable. There’s a bit of a jumble of things going on in this paper, with discussions of adaptation, survival, self-assessed health, optimism, and health behaviours. So it’s a bit difficult to see the wood for the trees. But the authors find the effect they’re looking for. Objective survival probability is negatively affected by a health shock, as is subjective survival probability. But then subjective survival starts to return to pre-shock trends whereas objective survival does not. The authors use this finding to suggest that there is adaptation. I’m not sure about this interpretation. To me it seems as if subjective life expectancy is only weakly responsive to changes in objective life expectancy. The findings seem to have more to do with how people process information about their probability of survival than with how they adapt to a situation. So while this is an interesting study about how people process changes in survival probability, I’m not sure what it has to do with adaptation.

3L, 5L, what the L? A NICE conundrum. PharmacoEconomics [PubMed] Published 26th February 2018

In my last round-up, I said I was going to write a follow-up blog post to an editorial on the EQ-5D-5L. I didn’t get round to it, but that’s probably best as there has since been a flurry of other editorials and commentaries on the subject. Here’s one of them. This commentary considers the perspective of NICE in deciding whether to support the use of the EQ-5D-5L and its English value set. The authors point out the differences between the 3L and 5L, namely the descriptive systems and the value sets. Examples of the 5L descriptive system’s advantages are provided: a reduced ceiling effect, reduced clustering, better discriminative ability, and the benefits of doing away with the ‘confined to bed’ level of the mobility domain. Great! On to the value set. There are lots of differences here, with 3 main causes: the data, the preference elicitation methods, and the modelling methods. We can’t immediately determine whether these differences are improvements or not. The authors stress the point that any differences observed will be in large part due to quirks in the original 3L value set rather than in the 5L value set. Nevertheless, the commentary is broadly supportive of a cautionary approach to 5L adoption. I’m not. Time for that follow-up blog post.