Paul Mitchell’s journal round-up for 15th May 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Informal care: choice or constraint. Scandinavian Journal of Caring Sciences [PubMed] Published 12th April 2017

The provision of social care in the UK has become a major economic issue, with recent increases in government spending and local authority taxation to help ease the burden on both the health and social care system in the short term. This study examines some of the issues surrounding informal carers (i.e. care of a family member), estimated to be approximately 10% of the UK population. In particular, it focuses on the role of choice and constraints involved with the decision to become a carer. Using a cross-sectional survey for a UK city, choice of caring was explored in terms of responses to care provision provided, asking if it was a free choice initially to provide care, and if there were constraints in terms of duty, lack of others or financial resources for paid care. The analysis focused on how perceived choice in the caring role was associated with socio-demographics and the type of caring role performed, as well as the role of perceived choice in caring and their wellbeing. Out of the 798 respondents to all four questions on caring choice, about 1 in 3 reported an entirely free choice in the decision, with half reporting having a free choice but also a constraint in terms of duty, other available carers or financial resources. Less than 1 in 5 reported not having a free choice. Only carers with bad health or receiving state benefits had an association with a constrained caring role. The more intense the care role was also associated with a more constrained choice. Higher levels of choice were associated with higher levels of wellbeing across measures of happiness, life satisfaction and capability. In multivariable regression analysis, it was found that having a free choice in the initial caring decision resulted in a higher impact on life satisfaction than educational qualifications and home ownership, whilst improved capability of comparable levels to that of home ownership, all else being equal. The authors thus recommend enhanced choice as a way for policy to improve carers wellbeing. Although the authors acknowledge limitations with the study design being cross-sectional and geographically limited to one city, the study shows there is plenty of scope for understanding the determinants of informal caring and consequences for those carers in much greater detail in future national surveys to help address policy in this area in the medium to longer term.

Experienced utility or decision utility for QALY calculation? Both. Public Health Ethics [PhilPapersPublished 6th May 2017

How health states should be valued in population health metrics, like QALYs and DALYs, will not be an unfamiliar topic of discussion for regular readers of this blog. Instead of arguing for decision utility (i.e. accounting for general population preferences for avoiding health states) or experienced utility (i.e. accounting for patient experiences of health states), the authors in this paper argue for a combined approach, reviving a suggestion previously put forward by Lowenstein & Ubel. The authors neatly summarise some of the issues of relying on either decision utility or experienced utility approaches alone and instead argue for better informed decision utility exercises by using deliberative democracy methods where experienced utility in health states are also presented. Unfortunately, there is little detail of how this process might actually work in practice. There are likely to be issues of what patient experiences are presented in such an exercise and how other biases that may influence decision utility responses are controlled for in such an approach. Although I am generally in favour of more deliberative approaches to elicit informed values for resource allocation, I find that this paper makes a convincing case for neither of the utility approaches to valuation, rather than both.

The value of different aspects of person-centred care: a series of discrete choice experiments in people with long-term conditions. BMJ Open [PubMed] Published 26th April 2017

The term “person-centred care” is one which is gaining some prominence in how healthcare is provided. What it means, and how important different aspects of person-centred care are, is explored in this study using discrete choice experiments (DCEs). Through focus groups and drawing from the authors’ own experience in this area, four aspects of person-centred care for self-management of chronic conditions make up the attributes in the DCE across two levels: (i) information (same information for all/personalised information); (ii) situation (little account of current situation/suggestions that fit current situation); (iii) living well (everyone wants the same from life/works with patient for what they want from life); (iv) communication (neutral professional way/friendly professional way). A cost attribute was also attached to the DCE that was given to patient groups with chronic pain and chronic lung disease. The overall findings suggest that person-centred care focused on situation and living well were valued most with personal communication style valued the least. Latent class analysis also suggested that 1 in 5 of those sampled valued personalised information the most. Those with lower earnings were likely to look to reduce the cost attribute the most. The authors conclude that the focus on communication in current clinician training on person-centred care may not be what is of most value to patients. However, I am not entirely convinced by this argument, as it could be that communication was not seen as an issue by the respondents, perhaps somewhat influenced due to the skills clinicians already have obtained in this area. Clearly, these process aspects of care are difficult to develop attributes for in DCEs, and the authors acknowledge that the wording of the “neutral” and “high” levels may have biased responses. I also found that dropping the “negative” third level for each of the attributes unconvincing. It may have proved more difficult to complete than two levels, but it would have shown in much greater depth how much value is attached to the four attributes relative to one another.



Visualising PROMs data

The patient reported outcomes measures, or PROMs, is a large database with before and after health-related quality of life (HRQoL) measures for a large number of patients undergoing four key conditions: hip replacement, knee replacement, varicose vein surgery and surgery for groin hernia. The outcome measures are the EQ-5D index and visual analogue scale (and a disease-specific measure for three of the interventions). These data also contain the provider of the operation. Being publicly available, these data allow us to look at a range of different questions: what’s the average effect of the surgery on HRQoL? What are the differences between providers in gains to HRQoL or in patient casemix? Great!

The first thing we should always do with new data is to look at it. This might be in an exploratory way to determine the questions to ask of the data or in an analytical way to get an idea of the relationships between variables. Plotting the data communicates more about what’s going on than any table of statistics alone. However, the plots on the NHS Digital website might be accused of being a little uninspired as they collapse a lot of the variation into simple charts that conceal a lot of what’s going on. For example:

So let’s consider other ways of visualising this data. For all these plots a walk through of the code is at the end of this post.

Now, I’m not a regular user of PROMs data, so what I think are the interesting features of the data may not reflect what the data are generally used for. For this, I think the interesting features are:

  • The joint distribution of pre- and post-op scores
  • The marginal distributions of pre- and post-op scores
  • The relationship between pre- and post-op scores over time

We will pool all the data from six years’ worth of PROMs data. This gives us over 200,000 observations. A scatter plot with this information is useless as the density of the points will be very high. A useful alternative is hexagonal binning, which is like a two-dimensional histogram. Hexagonal tiles, which usefully tessellate and are more interesting to look at than squares, can be shaded or coloured with respect to the number of observations in each bin across the support of the joint distribution of pre- and post-op scores (which is [-0.5,1]x[-0.5,1]). We can add the marginal distributions to the axes and then add smoothed trend lines for each year. Since the data are constrained between -0.5 and 1, the mean may not be a very good summary statistic, so we’ll plot a smoothed median trend line for each year. Finally, we’ll add a line on the diagonal. Patients above this line have improved and patients below it deteriorated.

Hip replacement results

Hip replacement results

There’s a lot going on in the graph, but I think it reveals a number of key points about the data that we wouldn’t have seen from the standard plots on the website:

  • There appear to be four clusters of patients:
    • Those who were in close to full health prior to the operation and were in ‘perfect’ health (score = 1) after;
    • Those who were in close to full health pre-op and who didn’t really improve post-op;
    • Those who were in poor health (score close to zero) and made a full recovery;
    • Those who were in poor health and who made a partial recovery.
  • The median change is an improvement in health.
  • The median change improves modestly from year to year for a given pre-op score.
  • There are ceiling effects for the EQ-5D.

None of this is news to those who study these data. But this way of presenting the data certainly tells more of a story that the current plots on the website.

R code

We’re going to consider hip replacement, but the code is easily modified for the other outcomes. Firstly we will take the pre- and post-op score and their difference and pool them into one data frame.

# df 14/15
df<-read.csv("C:/docs/proms/Record Level Hip Replacement 1415.csv")

df$post<- df$Post.Op.Q.EQ5D.Index
df$diff<- df$post - df$pre

df1415 <- df[,c('Provider.Code','pre','post','diff')]

# df 13/14
df<-read.csv("C:/docs/proms/Record Level Hip Replacement 1314.csv")

df$post<- df$Post.Op.Q.EQ5D.Index
df$diff<- df$post - df$pre

df1314 <- df[,c('Provider.Code','pre','post','diff')]

# df 12/13
df<-read.csv("C:/docs/proms/Record Level Hip Replacement 1213.csv")

df$post<- df$Post.Op.Q.EQ5D.Index
df$diff<- df$post - df$pre

df1213 <- df[,c('Provider.Code','pre','post','diff')]

# df 11/12
df<-read.csv("C:/docs/proms/Hip Replacement 1112.csv")

df$post<- df$Q2_EQ5D_INDEX
df$diff<- df$post - df$pre

df1112 <- df[,c('Provider.Code','pre','post','diff')]

# df 10/11
df<-read.csv("C:/docs/proms/Record Level Hip Replacement 1011.csv")

df$post<- df$Q2_EQ5D_INDEX
df$diff<- df$post - df$pre

df1011 <- df[,c('Provider.Code','pre','post','diff')]




Now, for the plot. We will need the packages ggplot2, ggExtra, and extrafont. The latter package is just to change the plot fonts, not essential, but aesthetically pleasing.

loadfonts(device = "win")

 geom_quantile(aes(color=year),method = "rqss", lambda = 2,quantiles=0.5,size=1)+
 scale_fill_gradient2(name="Count (000s)",low="light grey",midpoint = 15000,
   mid="blue",high = "red",
 labs(x="Pre-op EQ-5D index score",y="Post-op EQ-5D index score")+
 theme(legend.position = "bottom",text=element_text(family="Gill Sans MT"))

ggMarginal(p, type = "histogram")

Kenneth Arrow on healthcare economics: a 21st century appreciation

Nobel laureate Kenneth Arrow passed away on February 21, 2017. In a classic, fifty-year-old paper entitled Uncertainty and the Welfare Economics of Medical Care, Arrow discussed how:

“the operation of the medical-care industry and the efficacy with which it satisfies the needs of society differs from… a competitive model… If a competitive equilibrium exists at all, and if all commodities relevant to costs or utilities are in fact priced in the market, then the equilibrium is necessarily [Pareto] optimal” (emphasis added)

Note the implicit assumption that price reflects value, to which I’ll return. As Arrow elegantly explained, there are vast differences between the actual healthcare market and the competitive model, and, moreover, these differences arise from important features of the actual healthcare market.

Identifying the lack of realism of the competitive model in health care may lead to deeper understanding of the actual system. In essence this is what Arrow does. Although both medical care and our expectations have changed greatly, Arrow ’63 is still valid and worth reading today.

Here is Arrow’s summary of the differences between the healthcare market and typical competitive markets.

The nature of demand

Demand for medical services is irregular and unpredictable:

“Medical services, apart from preventive services, afford satisfaction only in the event of illness, a departure from the normal state of affairs… Illness is, thus, not only risky but a costly risk in itself, apart from the cost of medical care.”

Expected behavior of the physician

“It is at least claimed that treatment is dictated by objective needs of the case and not limited by financial considerations… Charity treatment in one form or another does exist because of this tradition about human rights to adequate medical care.”

Product uncertainty

“Recovery from disease is as unpredictable as its incidence…  Because medical knowledge is so complicated, the information possessed by the physician as to the consequences and possibilities of treatment is necessarily very much greater than that of the patient, or at least so it is believed by both parties.”

Supply conditions

Barriers to entry include licensing and other controls on quality (accreditation) and costs.

“One striking consequence of the control of quality is the restriction on the range offered… The declining ratio of physicians to total employees in the medical-care industry shows that substitution of less trained personnel, technicians and the like, is not prevented completely, but the central role of the highly trained physician is not affected at all.”

Pricing practices

There are no fixed prices:

“extensive price discrimination by income (with an extreme of zero prices for sufficiently indigent patients)… the apparent rigidity of so-called administered prices considerably understates the actual flexibility.”

Avik Roy observes in a critical National Review article that “Because patients don’t see the bill until after the non-refundable service has been consumed, and because patients are given little information about price and cost, patients and payors are rarely able to shop around for a medical service based on price and value.”

Medicine has seen major changes since Arrow’s 1963 paper. For example, the treatment of blocked coronary arteries has evolved from coronary bypass to angioplasty to early stents and finally drug-eluting stents. We have seen the advent of minimally invasive surgery, robotic surgery and catheter-based cardiac valve repair and replacement. We have seen drugs to treat hepatitis C and biologicals to treat arthritis and cancer. Many conditions have been transformed from acute to chronic but (at least temporarily) manageable. There are also divergent trends, such as increases in both natural childbirth and Caesarean sections.

In the last 50 years, medicine has become more powerful, but also significantly more complex and overall, more expensive. Intensive care units are a good example, both valuable therapeutically, but expensive to provide. At the same time, many treatments are both better (more valuable to the patient) and less expensive to provide; these range from root canal (frequently two visits to the dentist instead of four) to the significantly less invasive treatments for many cardiac rhythm abnormalities (radio-frequency ablation) and stents for coronary artery disease. The advent of epinephrine auto-injectors has been a lifesaver, but the cost of the Epi-Pen has increased significantly.

Can a competitive economic system appropriately and reasonably price such treatments and devices? Arrow argues that, if not, non-market social institutions will arise and address these challenges. Here is a deeper look.

Arrow’s first two points are still virtually axiomatic today: demand for medical services has become even more unpredictable with the continued growth of advanced, effective interventions and corresponding, appropriately increasing (in my opinion), patient expectations. Similarly, as medical care advances, we increasingly see medical care as a human right and in many cases, a societal obligation. We have come to expect treatment dictated by objective needs and not limited by financial considerations, not only from physicians but from a growing number of key players including pharmaceutical companies. To their credit, in many cases (AIDS comes to mind) pharmaceutical companies have responded by sharply reducing prices in the developing world.

Powerful chemotherapeutic and biologic drugs may have increased the uncertainty and asymmetry of information observed by Arrow, both in their effectiveness and in their side effects. In many cases one needs the language and mathematics of probability and statistics to evaluate, assess and describe their efficacy and utility. One needs an understanding of probability to determine when and how to use common preventive techniques, such as mammograms and PSA screening. Here is an example, paraphrased from Gigerenzer and Edwards (see also Strogatz). Women 40 to 50 years old, with no family history of breast cancer, are a low-risk population; the overall probability of breast cancer in this population is 0.8%. Assume that mammography has a sensitivity of 90% and a false positive rate of 7%.  A woman has a positive mammogram. What is the probability that she has breast cancer? Among 25 German doctors surveyed, 36% said 90% or more, 32% said 50-80%, and 32% said 10% or less. Most (95%) of United States doctors thought the probability was approximately 75%.  (See the links above for the answer, or see my next blog on the challenge of communicating probability).

Arrow’s information asymmetry remains, despite the growing availability of accessible medical information on the web, perhaps for good reasons such as the ability to effectively address the needs of sicker patients.

I would amend Arrow’s discussion of supply conditions to include a wide variety of cost barriers ranging from large fixed costs of ICUs to the costs of medical research. The high cost of basic medical services relative to per capita GDP in the the developing world represents a barrier as high as any faced in the developed world.  As Arrow notes, society has addressed this challenge through a variety of pricing mechanisms outside traditional competitive models. This may not, and in general will not achieve a Pareto optimum, but their wide endorsement by society does indeed suggest that these approaches achieve a more general optimum.

“I propose here the view that, when the market fails to achieve an optimal state, society will, to some extent at least, recognize the gap, and nonmarket social institutions will arise attempting to bridge it… But it is contended here that the special structural characteristics of the medical-care market are largely attempts to overcome the lack of optimality due to the nonmarketability of the bearing of suitable risks and the imperfect marketability of information. These compensatory institutional changes, with some reinforcement from usual profit motives, largely explain the observed noncompetitive behavior of the medical-care market, behavior which, in itself, interferes with optimality. The social adjustment towards optimality thus puts obstacles in its own path.”

It is this view which I find too limiting. I would suggest that society has at least implicitly concluded that price alone does not define value, and thus formed a broader definition of optimality, not simply Pareto optimality in a competitive market. Society is finding and supporting ways to overcome obstacles toward this broader sense of optimality.

The Bill & Melinda Gates Foundation vaccination project aims to reduce the number of children that die each year from preventable disease (currently around 1.5 million). The lifebox project, founded by Dr Atul Gawande, provides affordable, high quality pulse oximeters to the developing world and now seeks to address basic surgical safety in the developing world. Important advances also arise in the developing world; most recently, an easy to deliver, more effective oral cholera vaccine developed in Vietnam.

Arrow himself recognizes the limits of a traditional economic description of the medical care market in his concluding Postscript, arguing that “The logic and limitations of ideal competitive behavior under uncertainty force us to recognize the incomplete description of reality supplied by the impersonal price system.” I conclude more generally that prices not only do not necessarily represent value in medical care (as Arrow observed), but that the combination of uncertainty, externalities, high costs, divergent economies, and technological advance means that price alone cannot describe value in medical care. A broader more general theory of healthcare economics with a foundation standing on the shoulders of giants such as Kenneth Arrow, with perhaps a more general multi-dimensional Pareto optimum, might help us all better understand where we are and where we might go.