Brent Gibbons’s journal round-up for 22nd January 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Is retirement good for men’s health? Evidence using a change in the retirement age in Israel. Journal of Health Economics [PubMed] Published January 2018

This article is a tour de force from one chapter of a recently completed dissertation from the Hebrew University of Jerusalem. The article focuses on answering the question of what are the health implications of extending working years for older adults. As many countries are faced with critical decisions on how to adjust labor policies to solve rising pension costs (or in the case of the U.S., Social Security insolvency) in the face of aging populations, one obvious potential solution is to change the retirement age. Most OECD countries appear to have retirement ages in the mid-60’s with a number of countries on track to increase that threshold. Israel is one of these countries, having changed their retirement age for men from age 65 to age 67 in 2004. The author capitalizes on this exogenous change in retirement incentives, as workers will be incentivized to keep working to receive full pension benefits, to measure the causal effect of working in these later years, compared to retiring. As the relationship between employment and health is complicated by the endogenous nature of the decision to work, there is a growing literature that has attempted to deal with this endogeneity in different ways. Shai details the conflicting findings in this literature and describes various shortcomings of methods used. He helpfully categorizes studies into those that compare health between retirees and non-retirees (does not deal with selection problem), those that use variation in retirement age across countries (retirement ages could be correlated with individual health across countries), those that exploit variation in specific sector retirement ages (problem of generalizing to population), and those that use age-specific retirement eligibility (health may deteriorate at specific age regardless of eligibility for retirement). As this empirical question has amounted conflicting evidence, the author suggests that his methodology is an improvement on prior papers. He uses a difference-in-difference model that estimates the impact on various health outcomes, before and after the law change, comparing those aged 65-66 years after 2004 with both older and younger cohorts unaffected by the law. The assumption is that any differences in measured health between the age 65-66 group and the comparison group are a result of the extended work in later years. There are several different datasets used in the study and quite a number of analyses that attempt to assuage threats to a causal interpretation of results. Overall, results are that delaying the retirement age has a negative effect on individual health. The size of the effect found is in the ballpark of 1 standard deviation; outcome measures included a severe morbidity index, a poor health index, and the number of physician visits. In addition, these impacts were stronger for individuals with lower levels of education, which the author relates to more physically demanding jobs. Counterfactuals, for example number of dentist visits, which are not expected to be related to employment, are not found to be statistically different. Furthermore, there are non-trivial estimated effects on health care expenditures that are positive for the delayed retirement group. The author suggests that all of these findings are important pieces of evidence in retirement age policy decisions. The implication is that health, at least for men, and especially for those with lower education, may be negatively impacted by delaying retirement and that, furthermore, savings as a result of such policies may be tempered by increased health care expenditures.

Evaluating community-based health improvement programs. Health Affairs [PubMed] Published January 2018

For article 2, I see that the lead author is a doctoral student in health policy at Harvard, working with colleagues at Vanderbilt. Without intention, this round-up is highlighting two very impressive studies from extremely promising young investigators. This study takes on the challenge of evaluating community-based health improvement programs, which I will call CBHIPs. CBHIPs take a population-based approach to public health for their communities and often focus on issues of prevention and health promotion. Investment in CBHIPs has increased in recent years, emphasizing collaboration between the community and public and private sectors. At the heart of CBHIPs are the ideas of empowering communities to self-assess and make needed changes from within (in collaboration with outside partners) and that CBHIPs allow for more flexibility in creating programs that target a community’s unique needs. Evaluations of CBHIPs, however, suffer from limited resources and investment, and often use “easily-collectable data and pre-post designs without comparison or control communities.” Current overall evidence on the effectiveness of CBHIPs remains limited as a result. In this study, the authors attempt to evaluate a large set of CBHIPs across the United States using inverse propensity score weighting and a difference-in-difference analysis. Health outcomes on poor or fair health, smoking status, and obesity status were used at the county level from the BRFSS (Behavioral Risk Factor Surveillance System) SMART (Selected Metropolitan/Micropolitan Area Risk Trends) data. Information on counties implementing CBHIPs was compiled through a series of systematic web searches and through interviews with leaders in population health efforts in the public and private sector. With information on the exact years of implementation of CBHIPs in each county, a pre-post design was used that identified county treatment and control groups. With additional census data, untreated counties were weighted to achieve better balance on pre-implementation covariates. Importantly, treated counties were limited to those with CBHIPs that implemented programs related to smoking and obesity. Results showed little to no evidence that CBHIPs improved population health outcomes. For example, CBHIPs focusing on tobacco prevention were associated with a 0.2 percentage point reduction in the rate of smoking, which was not statistically significant. Several important limitations of the study were noted by the authors, such as limited information on the intensity of programs and resources available. It is recognized that it is difficult to improve population-level health outcomes and that perhaps the study period of 5-years post-implementation may not have been long enough. The researchers encourage future CBHIPs to utilize more rigorous evaluation methods, while acknowledging the uphill battle CBHIPs face to do this.

Through the looking glass: estimating effects of medical homes for people with severe mental illness. Health Services Research [PubMed] Published October 2017

The third article in this round-up comes from a publication from October of last year, however, it is from the latest issue of Health Services Research so I deem it fair play. The article uses the topic of medical homes for individuals with severe mental illness to critically examine the topic of heterogeneous treatment effects. While specifically looking to answer whether there are heterogeneous treatment effects of medical homes on different portions of the population with a severe mental illness, the authors make a strong case for the need to examine heterogeneous treatment effects as a more general practice in observational studies research, as well as to be more precise in interpretations of results and statements of generalizability when presenting estimated effects. Adults with a severe mental illness were identified as good candidates for medical homes because of complex health care needs (including high physical health care needs) and because barriers to care have been found to exist for these individuals. Medicaid medical homes establish primary care physicians and their teams as the managers of the individual’s overall health care treatment. The authors are particularly concerned with the reasons individuals choose to participate in medical homes, whether because of expected improvements in quality of care, regional availability of medical homes, or symptomatology. Very clever differences in estimation methods allow the authors to estimate treatment effects associated with these different enrollment reasons. As an example, an instrumental variables analysis, using measures of regional availability as instruments, estimated local average treatment effects that were much smaller than the fixed effects estimates or the generalized estimating equation model’s effects. This implies that differences in county-level medical home availability are a smaller portion of the overall measured effects from other models. Overall results were that medical homes were positively associated with access to primary care, access to specialty mental health care, medication adherence, and measures of routine health care (e.g. screenings); there was also a slightly negative association with emergency room use. Since unmeasured stable attributes (e.g. patient preferences) do not seem to affect outcomes, results should be generalizable to the larger patient population. Finally, medical homes do not appear to be a good strategy for cost-savings but do promise to increase access to appropriate levels of health care treatment.

Credits

Paul Mitchell’s journal round-up for 25th December 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Consensus-based cross-European recommendations for the identification, measurement and valuation of costs in health economic evaluations: a European Delphi study. European Journal of Health Economics [PubMedPublished 19th December 2017

The primary aim of this study was to develop guidelines for costing in economic evaluation studies conducted across more than one European country. The starting point of the societal perspective as the benchmark for costing was not entirely obvious from the abstract, where this broadest approach to costing is not recommended uniformly across all European countries. Recommendations following this starting point looked at the identification, measurement and valuation of resource use, discount rate and discounting of future costs. A three-step Delphi study was used to gain consensus on what should be included in an economic evaluation from a societal perspective, based initially on findings from a review of costing methodologies adopted across European country-specific guidelines. Consensus required at least two thirds (67%) agreement across those participating in the Delphi study at all 3 stages. Where no agreement was reached after the three stages, a panel of four of the co-authors made a final decision on what should be recommended. In total, 26 of the 110 invited to participate completed at least one Delphi round, with all Delphi rounds having at least 16 participants. It remains unclear to me if 16 for a Delphi round is sufficient to reach a European wide consensus on costing methodologies. There were a number of key areas where no consensus was reached (e.g. including costs unrelated to the intervention, measurement of resource use and absenteeism, and valuation of opportunity costs of patient time and informal care), so the four-strong author panel had a leading role on some of the main recommendations. Notwithstanding the limitations associated with the reference perspective taken and sample for the Delphi study and panel, the paper provides a useful illustration of the different approaches to costing across European countries. It also provides a good coverage of costing issues that need to be explained in detail in economic evaluations to allow for clear understanding of methods used and the underpinning rationale for those decisions where a choice is required on the costing methodology applied.

A (five-)level playing field for mental health conditions?: exploratory analysis of EQ-5D-5L derived utility values. Quality of Life Research [PubMedPublished 16th December 2017

The UK health economics community has been reeling from the decision made earlier this year by UK guidelines developer, the National Institute for Health and Care Excellence (NICE), who recommended to not adopt the new population values developed for the EQ-5D-5L version when calculating QALYs and instead rely on a crosswalk of the values developed over 20 years ago for the 3 level EQ-5D version. This paper provides a timely comparison of how these two value sets perform for the EQ-5D-5L descriptive system in patient groups with mental health conditions, groups often thought to be disadvantaged by the physical health functioning focus of the EQ-5D descriptive system. Using baseline data from three trials, the authors find that the new utility values produce a higher mean EQ-5D score of 0.08 compared to the old crosswalk values, with a 0.225 difference for those reporting extreme problems with the anxiety/depression dimension on EQ-5D. Although, the authors of this study highlight using these new values would increase cost per QALY results in this sample using scenario analysis, when improvements are in the depression/anxiety category only, such improvements are relatively better than across the whole EQ-5D-5L descriptive system due to the relative additional value placed on the anxiety/depression dimension in the new values. This paper makes for interesting reading and one that NICE should take into consideration when reviewing their decision on this issue next year. Although I would disagree with the authors when they state that this study would be a primary reason for revising the NICE cost-effectiveness threshold (more compelling arguments for this elsewhere in my view), it does clearly highlight the influence of the choice of descriptive system and the values used in the outcomes produced for economic analysis such as QALYs, even when the two descriptive systems in question (EQ-5D-3L and EQ-5D-5L) are roughly the same.

What characteristics of nursing homes are most valued by customers? A discrete choice experiment with residents and family members. Value in Health Published 1st December 2017

Our final paper for review in 2017 looks at the characteristics that are of most importance to individuals and their family members when it comes to nursing home provision. The authors conducted a valuation exercise using a discrete choice experiment (DCE) to calculate the relative importance of the attributes contained on the Consumer Choice Index-Six Dimension (CCI-6D), a measure developed to assess the quality of nursing home care across 3 levels on six domains: 1. level of time care staff spent with residents; 2. homeliness of shared spaces; 3. homeliness of room setup; 4. access to outside and garden; 5. frequency of meaningful activities; and 6. flexibility with care routines. Those who lived in a nursing home for at least a year with low levels of cognitive impairment completed the DCE themselves, whereas family members were asked to proxy for their close relative with more severe cognitive impairment. 126 residents and 416 family member proxies completed the DCE comparisons of nursing homes with different qualities in these six areas. The results of the DCE show differences in preferences across the two groups. Although similar importance is placed on some dimensions across both groups (i.e. “homeliness of room set up” ranked highly, whereas “frequency of meaningful activities” ranked lower), residents value access to outside and garden four times as much as the family proxies do (second most important dimension for residents, lowest for family proxies), family members value level of time care staff spent with residents twice as much as residents themselves (most important attribute for family proxies, third most important for residents). Although residents in both groups may have important differences in characteristics that might explain some of this difference, it is probably a good time of year to remember family preferences may be inconsistent with individuals within them, so make sure to take account of this variation when preparing those Christmas dinners.

Happy holidays all.

Credits

Alastair Canaway’s journal round-up for 10th July 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Use-of-time and health-related quality of life in 10- to 13-year-old children: not all screen time or physical activity minutes are the same. Quality of life Research [PubMedPublished 3rd July 2017

“If you watch too much TV, it’ll make your eyes square” – something I heard a lot as a child. This first paper explores whether this is true (sort of) by examining associations between aspects of time use and HRQL in children aged 10-13 (disclaimer: I peer reviewed it and was pleased to see them incorporate my views). This paper aims to examine how different types of time use are linked to HRQL. Time use was examined by the Multimedia Activity Recall for Children and Adolescents (MARCA) which separates out time into physical activity (sport, active transport, and play), screen time (TV, videogames, computer use), and sleep. The PedsQL was used to assess HRQL, whilst dual x-ray absorptiometry was used to accurately assess fatness. There were a couple of novel aspects to this study, first, the use of absorptiometry to accurately measure body fat percentage rather than the problematic BMI/skin folds in children; second, separating time out into specific components rather than just treating physical activity or screen time as homogeneous components. The primary findings were that for both genders, fatness (negative), sport (positive) and development stage (negative) were associated with HRQL. For boys, the most important other predictor of HRQL was videogames (negative) whilst predictors for girls included television (negative), active transport (negative) and household income (positive). With the exception of ‘active travel’ for girls, I don’t think any of these findings are particularly surprising. As with all cross-sectional studies of this nature, the authors give caution to the results: inability to demonstrate causality. Despite this, it opens the door for various possibilities for future research, and ideas for shaping future interventions in children this age.

Raise the bar, not the threshold value: meeting patient preferences for palliative and end-of-life care. PharmacoEconomics – Open Published 27th June 2017

Health care ≠ end of life care. Whilst health care seeks to maximise health, can the same be said for end of life care? Probably not. This June saw an editorial elaborating on this issue. Health is an important facet of end of life care. However, there are other substantial objects of value in this context e.g. preferences for place of care, preparedness, reducing family burdens etc. Evidence suggests that people at end of life can value these ‘other’ objects more than health status or life extension. Thus there is value beyond that captured by health. This is an issue for the QALY framework where health and length of life are the sole indicators of benefit. The editorial highlights that this is not people wishing for higher cost-per-QALY thresholds at end of life, instead, it is supporting the valuation of key elements of palliative care within the end of life context. It argues that palliative care interventions often are not amenable to integration with survival time in a QALY framework, this effectively implies that end of life care interventions should be evaluated in a separate framework to health care interventions altogether. The editorial discusses the ICECAP-Supportive Care Measure (designed for economic evaluation of end of life measures) as progress within this research context. An issue with this approach is that it doesn’t address allocative efficiency issues (and comparability) with ‘normal’ health care interventions. However, if end of life care is evaluated separately to regular healthcare, it will lead to better decisions within the EoL context. There is merit to this justification, after all, end of life care is often funded via third parties and arguments could, therefore, be made for adopting a separate framework. This, however, is a contentious area with lots of ongoing interest. For balance, it’s probably worth pointing out Chris’s (he did not ask me to put this in!) book chapter which debates many of these issues, specifically in relation to defining objects of value at end of life and whether the QALY should be altogether abandoned at EoL.

Investigating the relationship between costs and outcomes for English mental health providers: a bi-variate multi-level regression analysis. European Journal of Health Economics [PubMedPublished 24th June 2017

Payment systems that incentivise cost control and quality improvements are increasingly used. In England, until recently, mental health services have been funded via block contracts that do not necessarily incentivise cost control and payment has not been linked to outcomes. The National Tariff Payment System for reimbursement has now been introduced to mental health care. This paper harnesses the MHMDS (now called MHSDS) using multi-level bivariate regression to investigate whether it is possible to control costs without negatively affecting outcomes. It does this by examining the relationship between costs and outcomes for mental health providers. Due to the nature of the data, an appropriate instrumental variable was not available, and so it is important to note that the results do not imply causality. The primary results found that after controlling for key variables (demographics, need, social and treatment) there was a minuscule negative correlation between residual costs and outcomes with little evidence of a meaningful relationship. That is, the data suggest that outcome improvements could be made without incurring a lot more cost. This implies that cost-containment efforts by providers should not undermine outcome-improving efforts under the new payment systems. Something to bear in mind when interpreting the results is that there was a rather large list of limitations associated with the analysis, most notably that the analysis was conducted at a provider level. Although it’s continually improving, there still remain issues with the MHMDS data: poor diagnosis coding, missing outcome data, and poor quality of cost data. As somebody who is yet to use MHMDS data, but plans to in the future, this was a useful paper for generating ideas regarding what is possible and the associated limitations.

Credits