Thesis Thursday: Firdaus Hafidz

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Firdaus Hafidz who has a PhD from the University of Leeds. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Assessing the efficiency of health facilities in Indonesia
Tim Ensor, Sand Tubeuf
Repository link

What are some of the key features of health and health care in Indonesia?

Indonesia is a diverse country, with more than 17 thousand islands and 500 districts. Thus, there is a wide discrepancy of health outcomes across Indonesia, which also reflects the country’s double burden of both communicable and emerging non-communicable diseases. Communicable diseases such as tuberculosis, diarrhoea and lower respiratory tract infections remain as significant issues in Indonesia, especially in remote areas. At the same time, non-communicable diseases are becoming a major public health problem, especially in urban areas.

Total healthcare expenditure per capita grew rapidly, but in certain outcomes, such as maternal mortality rate, Indonesia performs less well than other low- and middle-income countries. Health facilities represent the largest share of healthcare expenditures, but utilisation is still considered low in both hospitals and primary healthcare facilities. Given the scarcity of public healthcare resources, out-of-pocket expenditure remains considerably higher than the global average.

To reduce financial barriers, the Government of Indonesia introduced health insurance in 1968. Between 2011 and 2014, there were three major insurance schemes: 1) Jamkesmas – poor scheme; 2) Jamsostek – formal sector workers scheme; and 3) Askes – civil servant scheme. In 2014, the three schemes were combined into a single-entity National Health Insurance scheme.

What methods can be used to measure the efficiency of health care in low and middle-income countries?

We reviewed measurements of efficiency in empirical analyses conducted in low- and middle-income countries. Methods, including techniques, variables, and efficiency indicators were summarised. There was no consensus on the most appropriate technique to measure efficiency, though most existing studies have relied on ratio analysis and data envelopment analysis because it is simple, easy to compute, low-cost and can be performed on small samples. The physical inputs included the type of capital (e.g. the number of beds and size of health facilities) and the type of labour (e.g. the number of medical and non-medical staff). Most of the published literature used health services as outputs (e.g. the number of outpatient visits, admission and inpatient days). However, because of poor data availability, fewer studies used case-mix and quality indicators to adjust outputs. So most of the studies in the literature review assumed that there was no difference in the severity and effectiveness of healthcare services. Despite the complexity of the techniques, researchers are responsible to provide interpretable results to the policymakers to guide their decisions for a better health policy on efficiency. Adopting appropriate methods that have been used globally would be beneficial to benchmark empirical studies.

Were you able to identify important sources of inefficiency in Indonesia?

We used several measurement techniques including frontier analysis and ratio analysis. We explored contextual variables to assess factors determining efficiency. The range of potential models produced help policymakers in the decision-making process according to their priority and allow some control over the contextual variables. The results revealed that the efficiency of primary care facilities can be explained by population health insurance coverage, especially through the insurance scheme for the poor. Geographical factors, such as the main islands (Java or Bali), better access to health facility, and location in an urban area also have a strong impact on efficiency. At the hospitals, the results highlighted higher efficiency levels in larger hospitals; they were more likely to present in deprived areas with low levels of education; and they were located on Java or Bali. Greater health insurance coverage also had a positive and significant influence on efficiency.

How could policymakers improve the efficiency of health care in Indonesia or other similar settings?

I think there are several ideas. First, we need to have a careful tariff adjustment as we found an association between low unit costs and high efficiency scores. Case base group tariffs need to account for efficiency scores to prevent unnecessary incentives for the providers, exacerbating inefficiency in the health system.

Secondly, we need flexibility in employment contracts, particularly for the less productive civil servant worker so the less productive worker could be reallocated. We also need a better remuneration policy to attract skilled labour and improve health facilities efficiency.

From the demand side, reducing physical barriers by improving infrastructure could increase efficiency in the rural health care facilities through higher utilisation of care. Facilities with very low utilisation rates still incur a fixed cost and thus create inefficiency. Through the same argument we also need to reduce financial barriers using incentives programmes and health insurance, thus patients who are economically disadvantaged can access healthcare services.

How would you like to see other researchers build on your work?

Data quality is crucial in secondary data analysis research, and it was quite a challenge in an Indonesian setting. Meticulous data management is needed to mitigate data errors such as inconsistency, outliers and missing values.

As this study used a 2011 cross-sectional dataset, replicating this study using a more recent and even longitudinal data would highlight changes in efficiency due to policy changes or interventions. Particularly interesting is the effect of the 2014 implementation of Indonesian national health insurance.

My study has some limitations and thus warrants further investigation. The stochastic frontier analysis failed to identify any inefficiency at hospitals when outpatient visits were included. The statistical errors of the frontier function cannot be distinguished from the inefficiency effect of the model. It might be related to the volume and heterogeneity of outpatient services which swamps the total volume of services and masks any inefficiency.

Thesis Thursday: Till Seuring

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Till Seuring who graduated with a PhD from the University of East Anglia. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

The economics of type 2 diabetes in middle-income countries
Marc Suhrcke, Max Bachmann, Pieter Serneels
Repository link

What made you want to study the economics of diabetes?

I was diagnosed with type 1 diabetes when I was 18. So while looking for a topic for my master’s thesis in development economics, I was wondering about how big of a problem diabetes – in particular, type 2 diabetes – would be in low- and middle-income countries (LMICs), because I had never heard about it during my studies. Looking for data I found some on Mexico, where, as it turned out, diabetes was a huge problem and ended up writing my master’s thesis on the labour market effects of diabetes in Mexico. After that, I worked at the International Diabetes Federation as a health economist in a junior position for about a year and a half and at one of their conferences met Prof Marc Suhrcke, who is doing a lot of global health and non-communicable disease related work. We stayed in contact and in the end he offered me the possibility to pursue a PhD on diabetes in LMICs. So this is how I ended up at the University of East Anglia in Norwich studying the economics of diabetes.

Which sources of data did you use for your analyses, and how was your experience of using them?

I exclusively used household survey data that was publicly available. In my master’s thesis, I had already worked with the Mexican Family Life Survey, which is quite an extensive household survey covering many socioeconomic as well as health-related topics. I ended up using it for two of my thesis chapters. The nice thing about it is that it has a panel structure now with three waves, and the last waves also included information on HbA1c levels – a biomarker used to infer on blood glucose levels over the last three months – that I could use to detect people with undiagnosed diabetes in the survey. The second source of data was the China Health and Nutrition Survey, which has many of the same qualities, with even more waves of data. There are more and more surveys with high-quality data coming out so it will be exciting to explore them further in the future.

How did you try to identify the effects of diabetes as separate from other influences?

As in many other fields, there is great worry that diabetes might be endogenous when trying to investigate its relationship with economic outcomes. For example, personal characteristics (such as ambition) could affect your likelihood to be employed or your wage, but maybe also your exercise levels and consequently your risk to develop diabetes. Unfortunately, such things are very difficult to measure so that they often remain unobserved. Similarly, changes in income or job status could affect lifestyles that in turn could change the risk to develop diabetes, making estimates prone to selection biases and reverse causality. To deal with this, I used several strategies. In my first paper on Mexico, I used a commonly used instrumental variable strategy. My instrument was parental diabetes and we argued that, given our control variables, it was unrelated to employment status but predicted diabetes in the children due to the genetic component of diabetes. In the second paper on Mexico, I used fixed effects estimation to control for any time-invariant confounding. This strategy does not need an instrument, however, unobserved time-variant confounding or reverse causality may still be a problem. I tackled the latter in my last paper on the effect of diabetes on employment and behavioural outcomes in China, using a methodology mainly used in epidemiology called marginal structural models, which uses inverse probability weighting to account for the selection into diabetes on previous values of the outcomes of interest, e.g. changes in employment status or weight. Of course, in the absence of a true experiment, it still remains difficult to truly establish causality using observational data, so one still needs to be careful to not over-interpret these findings.

The focus of your PhD was on middle-income countries. Does diabetes present particular economic challenges in this setting?

Well, over the last 30 years many middle-income countries, especially in Asia but also Latin America, have gone from diabetes rates much below high-income countries to surpassing them. China today has about 100 million people with diabetes, sporting the largest diabetes population worldwide. While, as countries become richer, first the economically better-off populations tend to have a higher diabetes prevalence, in many middle-income countries diabetes is now affecting, in particular, the middle class and the poor, who often lack the financial resources to access treatment or to even be diagnosed. Consequently, many remain poorly treated and develop diabetes complications that can lead to amputations, loss of vision and cardiovascular problems. Once these complications appear, the associated medical expenditures can represent a very large economic burden, and as I have shown in this thesis, can also lead to income losses because people lose their jobs.

What advice would you give to policymakers looking to minimise the economic burden of diabetes?

The policy question is always the most difficult one, but I’ll try to give some answers. The results of the thesis suggest that there is a considerable economic burden of diabetes which disproportionately affects the poor, the uninsured and women. Further, many people remain undiagnosed and some of the results of the biomarker analysis I conducted in one of my papers suggest that diagnosis likely often happens too late to prevent adverse health outcomes. Therefore, earlier diagnosis may help to reduce the burden, the problem is that once people are diagnosed they will also need treatment, and it appears that even now many do not receive appropriate treatment. Therefore, simply aiming to diagnose more people will not be sufficient. Policymakers in these countries will need to make sure that they will also be able to offer treatment to everybody, in particular the disadvantaged groups. Otherwise, inequities will likely become even greater and healthcare systems even more overburdened. How this can be achieved is another question and more research will be needed. Promising areas could be a greater integration of diabetes treatment into the existing health care systems specialised in treating communicable diseases such as tuberculosis, which often are related to diabetes. This would both improve treatment and likely limit the amount of additional costs. Of course, investments in early life health, nutrition and education will also help to reduce the burden by improving health and thereby economic possibilities, so that people may never become diabetic or at least have better possibilities to cope with the disease.