Thesis Thursday: Thomas Hoe

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Thomas Hoe who has a PhD from University College London. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
Essays on the economics of health care provision
Supervisors
Richard Blundell, Orazio Attanasio
Repository link
http://discovery.ucl.ac.uk/10048627/

What data do you use in your analyses and what are your main analytical methods?

I use data from the English National Health Service (NHS). One of the great features of the NHS is the centralized data it collects, with the Hospital Episodes Statistics (HES) containing information on every public hospital visit in England.

In my thesis, I primarily use two empirical approaches. In my work on trauma and orthopaedic departments, I exploit the fact that the number of emergency trauma admissions to hospital each day is random. This randomness allows me to conduct a quasi-experiment to assess how hospitals perform when they are more or less busy.

The second approach I use, in my work on emergency departments with Jonathan Gruber and George Stoye, is based on bunching techniques that originated in the tax literature (Chetty et al, 2013; Kleven and Waseem, 2013; Saez, 2010). These techniques use interpolation to infer how discontinuities in incentive schemes affect outcomes. We apply and extend these techniques to evaluate the impact of the ‘4-hour target’ in English emergency departments.

How did you characterise and measure quality in your research?

Measuring the quality of health care outcomes is always a challenge in empirical research. Since my research primarily relies on administrative data from HES, I use the patient outcomes that can be directly constructed from this data: in-hospital mortality, and unplanned readmission.

Mortality is, of course, an outcome that is widely used, and offers an unambiguous interpretation. Readmission, on the other hand, is an outcome that has gained more acceptance as a measure of quality in recent years, particularly following the implementation of readmission penalties in the UK and the US.

What is ‘crowding’, and how can it affect the quality of care?

I use the term crowding to refer, in a fairly general sense, to how busy a hospital is. This could mean that the hospital is physically very crowded, with lots of patients in close proximity to one another, or that the number of patients outstrips the available resources.

In practice, I evaluate how crowding affects quality of care by comparing hospital performance and patient outcomes on days when hospitals deal with different levels of admissions (due to random spikes in the number of trauma admissions). I find that hospitals respond by not only cancelling some planned admissions, such as elective hip and knee replacements, but also discharge existing patients sooner. For these discharged patients, the shorter-than-otherwise stay in the hospital is associated with poorer health outcomes for patients, most notably an increase in subsequent hospital visits (unplanned readmissions).

How might incentives faced by hospitals lead to negative consequences?

One of the strongest incentives faced by public hospitals in England is to meet the government-set waiting time target for elective care. This target has been very successful at reducing wait times. In doing so, however, it may have contributed to hospitals shortening patient stays and increasing patient admissions.

My research shows that shorter hospitals stays, in turn, can lead to increases in unplanned readmissions. Setting strong wait time targets, then, is in effect trading off shorter waits (from which patients benefit) with crowding effects (which may harm patients).

Your research highlights the importance of time in the hospital production process. How does this play out?

I look at this from three dimensions, each a separate part of a patient’s journey through hospital.

The first two relate to waiting for treatment. For elective patients, this means waiting for an appointment, and previous work has shown that patients attach significant value to reductions in these wait times. I show that trauma and orthopaedic patients would be better off with further wait time reductions, even if that leads to more crowding.

Emergency patients, in contrast, wait for treatment while physically in a hospital emergency department. I show that these waiting times can be very harmful and that by shortening these wait times we can actually save lives.

The third dimension relates to how long a patient spends in hospital recovering from surgery. I show that, at least on the margin of care for trauma and orthopaedic patients, an additional day in hospital has tangible benefits in terms of reducing the likelihood of experiencing an unplanned readmission.

How could your findings be practically employed in the NHS to improve productivity?

I would highlight two areas of my research that speak directly to the policy debate about NHS productivity.

First, while the wait time targets for elective care may have led to some crowding problems and subsequently more readmissions, the net benefit of these targets to trauma and orthopaedic patients is positive. Second, the wait time target for emergency departments also appears to have benefited patients: it saved lives at a reasonably cost-effective rate.

From the perspective of patients, therefore, I would argue these policies have been relatively successful and should be maintained.

James Lomas’s journal round-up for 21st May 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Decision making for healthcare resource allocation: joint v. separate decisions on interacting interventions. Medical Decision Making [PubMed] Published 23rd April 2018

While it may be uncontroversial that including all of the relevant comparators in an economic evaluation is crucial, a careful examination of this statement raises some interesting questions. Which comparators are relevant? For those that are relevant, how crucial is it that they are not excluded? The answer to the first of these questions may seem obvious, that all feasible mutually exclusive interventions should be compared, but this is in fact deceptive. Dakin and Gray highlight inconsistency between guidelines as to what constitutes interventions that are ‘mutually exclusive’ and so try to re-frame the distinction according to whether interventions are ‘incompatible’ – when it is physically impossible to implement both interventions simultaneously – and, if not, whether interventions are ‘interacting’ – where the costs and effects of the simultaneous implementation of A and B do not equal the sum of these parts. What I really like about this paper is that it has a very pragmatic focus. Inspired by policy arrangements, for example single technology appraisals, and the difficulty in capturing all interactions, Dakin and Gray provide a reader-friendly flow diagram to illustrate cases where excluding interacting interventions from a joint evaluation is likely to have a big impact, and furthermore propose a sequencing approach that avoids the major problems in evaluating separately what should be considered jointly. Essentially when we have interacting interventions at different points of the disease pathway, evaluating separately may not be problematic if we start at the end of the pathway and move backwards, similar to the method of backward induction used in sequence problems in game theory. There are additional related questions that I’d like to see these authors turn to next, such as how to include interaction effects between interventions and, in particular, how to evaluate system-wide policies that may interact with a very large number of interventions. This paper makes a great contribution to answering all of these questions by establishing a framework that clearly distinguishes concepts that had previously been subject to muddied thinking.

When cost-effective interventions are unaffordable: integrating cost-effectiveness and budget impact in priority setting for global health programs. PLoS Medicine [PubMed] Published 2nd October 2017

In my opinion, there are many things that health economists shouldn’t try to include when they conduct cost-effectiveness analysis. Affordability is not one of these. This paper is great, because Bilinski et al shine a light on the worldwide phenomenon of interventions being found to be ‘cost-effective’ but not affordable. A particular quote – that it would be financially impossible to implement all interventions that are found to be ‘very cost-effective’ in many low- and middle-income countries – is quite shocking. Bilinski et al compare and contrast cost-effectiveness analysis and budget impact analysis, and argue that there are four key reasons why something could be ‘cost-effective’ but not affordable: 1) judging cost-effectiveness with reference to an inappropriate cost-effectiveness ‘threshold’, 2) adoption of a societal perspective that includes costs not falling upon the payer’s budget, 3) failing to make explicit consideration of the distribution of costs over time and 4) the use of an inappropriate discount rate that may not accurately reflect the borrowing and investment opportunities facing the payer. They then argue that, because of this, cost-effectiveness analysis should be presented along with budget impact analysis so that the decision-maker can base a decision on both analyses. I don’t disagree with this as a pragmatic interim solution, but – by highlighting these four reasons for divergence of results with such important economic consequences – I think that there will be further reaching implications of this paper. To my mind, Bilinski et al essentially serves as a call to arms for researchers to try to come up with frameworks and estimates so that the conduct of cost-effectiveness analysis can be improved in order that paradoxical results are no longer produced, decisions are more usefully informed by cost-effectiveness analysis, and the opportunity costs of large budget impacts are properly evaluated – especially in the context of low- and middle-income countries where the foregone health from poor decisions can be so significant.

Patient cost-sharing, socioeconomic status, and children’s health care utilization. Journal of Health Economics [PubMed] Published 16th April 2018

This paper evaluates a policy using a combination of regression discontinuity design and difference-in-difference methods. Not only does it do that, but it tackles an important policy question using a detailed population-wide dataset (a set of linked datasets, more accurately). As if that weren’t enough, one of the policy reforms was actually implemented as a result of a vote where two politicians ‘accidentally pressed the wrong button’, reducing concerns that the policy may have in some way not been exogenous. Needless to say I found the method employed in this paper to be a pretty convincing identification strategy. The policy question at hand is about whether demand for GP visits for children in the Swedish county of Scania (Skåne) is affected by cost-sharing. Cost-sharing for GP visits has occurred for different age groups over different periods of time, providing the basis for regression discontinuities around the age threshold and treated and control groups over time. Nilsson and Paul find results suggesting that when health care is free of charge doctor visits by children increase by 5-10%. In this context, doctor visits happened subject to telephone triage by a nurse and so in this sense it can be argued that all of these visits would be ‘needed’. Further, Nilsson and Paul find that the sensitivity to price is concentrated in low-income households, and is greater among sickly children. The authors contextualise their results very well and, in addition to that context, I can’t deny that it also particularly resonated with me to read this approaching the 70th birthday of the NHS – a system where cost-sharing has never been implemented for GP visits by children. This paper is clearly also highly relevant to that debate that has surfaced again and again in the UK.

Credits

 

Thesis Thursday: Francesco Longo

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Francesco Longo who has a PhD from the University of York. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
Essays on hospital performance in England
Supervisor
Luigi Siciliani
Repository link
http://etheses.whiterose.ac.uk/18975/

What do you mean by ‘hospital performance’, and how is it measured?

The concept of performance in the healthcare sector covers a number of dimensions including responsiveness, affordability, accessibility, quality, and efficiency. A PhD does not normally provide enough time to investigate all these aspects and, hence, my thesis mostly focuses on quality and efficiency in the hospital sector. The concept of quality or efficiency of a hospital is also surprisingly broad and, as a consequence, perfect quality and efficiency measures do not exist. For example, mortality and readmissions are good clinical quality measures but the majority of hospital patients do not die and are not readmitted. How well does the hospital treat these patients? Similarly for efficiency: knowing that a hospital is more efficient because it now has lower costs is essential, but how is that hospital actually reducing costs? My thesis tries to answer also these questions by analysing various quality and efficiency indicators. For example, Chapter 3 uses quality measures such as overall and condition-specific mortality, overall readmissions, and patient-reported outcomes for hip replacement. It also uses efficiency indicators such as bed occupancy, cancelled elective operations, and cost indexes. Chapter 4 analyses additional efficiency indicators, such as admissions per bed, the proportion of day cases, and proportion of untouched meals.

You dedicated a lot of effort to comparing specialist and general hospitals. Why is this important?

The first part of my thesis focuses on specialisation, i.e. an organisational form which is supposed to generate greater efficiency, quality, and responsiveness but not necessarily lower costs. Some evidence from the US suggests that orthopaedic and surgical hospitals had 20 percent higher inpatient costs because of, for example, higher staffing levels and better quality of care. In the English NHS, specialist hospitals play an important role because they deliver high proportions of specialised services, commonly low-volume but high-cost treatments for patients with complex and rare conditions. Specialist hospitals, therefore, allow the achievement of a critical mass of clinical expertise to ensure patients receive specialised treatments that produce better health outcomes. More precisely, my thesis focuses on specialist orthopaedic hospitals which, for instance, provide 90% of bone and soft tissue sarcomas surgeries, and 50% of scoliosis treatments. It is therefore important to investigate the financial viability of specialist orthopaedic hospitals relative to general hospitals that undertake similar activities, under the current payment system. The thesis implements weighted least square regressions to compare profit margins between specialist and general hospitals. Specialist orthopaedic hospitals are found to have lower profit margins, which are explained by patient characteristics such as age and severity. This means that, under the current payment system, providers that generally attract more complex patients such as specialist orthopaedic hospitals may be financially disadvantaged.

In what way is your analysis of competition in the NHS distinct from that of previous studies?

The second part of my thesis investigates the effect of competition on quality and efficiency under two different perspectives. First, it explores whether under competitive pressures neighbouring hospitals strategically interact in quality and efficiency, i.e. whether a hospital’s quality and efficiency respond to neighbouring hospitals’ quality and efficiency. Previous studies on English hospitals analyse strategic interactions only in quality and they employ cross-sectional spatial econometric models. Instead, my thesis uses panel spatial econometric models and a cross-sectional IV model in order to make causal statements about the existence of strategic interactions among rival hospitals. Second, the thesis examines the direct effect of hospital competition on efficiency. The previous empirical literature has studied this topic by focusing on two measures of efficiency such as unit costs and length of stay measured at the aggregate level or for a specific procedure (hip and knee replacement). My thesis provides a richer analysis by examining a wider range of efficiency dimensions. It combines a difference-in-difference strategy, commonly used in the literature, with Seemingly Unrelated Regression models to estimate the effect of competition on efficiency and enhance the precision of the estimates. Moreover, the thesis tests whether the effect of competition varies for more or less efficient hospitals using an unconditional quantile regression approach.

Where should researchers turn next to help policymakers understand hospital performance?

Hospitals are complex organisations and the idea of performance within this context is multifaceted. Even when we focus on a single performance dimension such as quality or efficiency, it is difficult to identify a measure that could work as a comprehensive proxy. It is therefore important to decompose as much as possible the analysis by exploring indicators capturing complementary aspects of the performance dimension of interest. This practice is likely to generate findings that are readily interpretable by policymakers. For instance, some results from my thesis suggest that hospital competition improves efficiency by reducing admissions per bed. Such an effect is driven by a reduction in the number of beds rather than an increase in the number of admissions. In addition, competition improves efficiency by pushing hospitals to increase the proportion of day cases. These findings may help to explain why other studies in the literature find that competition decreases length of stay: hospitals may replace elective patients, who occupy hospital beds for one or more nights, with day case patients, who are instead likely to be discharged the same day of admission.