Alastair Canaway’s journal round-up for 30th July 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Is there an association between early weight status and utility-based health-related quality of life in young children? Quality of Life Research [PubMed] Published 10th July 2018

Childhood obesity is an issue which has risen to prominence in recent years. Concurrently, there has been an increased interest in measuring utility values in children for use in economic evaluation. In the obesity context, there are relatively few studies that have examined whether childhood weight status is associated with preference-based utility and, following, whether such measures are useful for the economic evaluation of childhood obesity interventions. This study sought to tackle this issue using the proxy version of the Health Utilities Index Mark 3 (HUI-3) and weight status data in 368 children aged five years. Associations between weight status and HUI-3 score were assessed using various regression techniques. No statistically significant differences were found between weight status and preference-based health-related quality of life (HRQL). This adds to several recent studies with similar findings which imply that young children may not experience any decrements in HRQL associated with weight status, or that the measures we have cannot capture these decrements. When considering trial-based economic evaluation of childhood obesity interventions, this highlights that we should not be solely relying on preference-based instruments.

Time is money: investigating the value of leisure time and unpaid work. Value in Health Published 14th July 2018

For those of us who work on trials, we almost always attempt to do some sort of ‘societal’ perspective incorporating benefits beyond health. When it comes to valuing leisure time and unpaid work there is a dearth of literature and numerous methodological challenges which has led to a bit of a scatter-gun approach to measuring and valuing (usually by ignoring) this time. The authors in the paper sought to value unpaid work (e.g. household chores and voluntary work) and leisure time (“non-productive” time to be spent on one’s likings, nb. this includes lunch breaks). They did this using online questionnaires which included contingent valuation exercises (WTP and WTA) in a sample of representative adults in the Netherlands. Regression techniques following best practice were used (two-part models with transformed data). Using WTA they found an additional hour of unpaid work and leisure time was valued at €16 Euros, whilst the WTP value was €9.50. These values fall into similar ranges to those used in other studies. There are many issues with stated preference studies, which the authors thoroughly acknowledge and address. These costs, so often omitted in economic evaluation, have the potential to be substantial and there remains a need to accurately value this time. Capturing and valuing these time costs remains an important issue, specifically, for those researchers working in countries where national guidelines for economic evaluation prefer a societal perspective.

The impact of depression on health-related quality of life and wellbeing: identifying important dimensions and assessing their inclusion in multi-attribute utility instruments. Quality of Life Research [PubMed] Published 13th July 2018

At the start of every trial, we ask “so what measures should we include?” In the UK, the EQ-5D is the default option, though this decision is not often straightforward. Mental health disorders have a huge burden of impact in terms of both costs (economic and healthcare) and health-related quality of life. How we currently measure the impact of such disorders in economic evaluation often receives scrutiny and there has been recent interest in broadening the evaluative space beyond health to include wellbeing, both subjective wellbeing (SWB) and capability wellbeing (CWB). This study sought to identify which dimensions of HRQL, SWB and CWB were most affected by depression (the most common mental health disorder) and to examine the sensitivity of existing multi-attribute utility instruments (MAUIs) to these dimensions. The study used data from the “Multi-Instrument Comparison” study – this includes lots of measures, including depression measures (Depression Anxiety Stress Scale, Kessler Psychological Distress Scale); SWB measures (Personal Wellbeing Index, Satisfaction with Life Scale, Integrated Household Survey); CWB (ICECAP-A); and multi-attribute utility instruments (15D, AQoL-4D, AQoL-8D, EQ-5D-5L, HUI-3, QWB-SA, and SF-6D). To identify dimensions that were important, the authors used the ‘Glass’s Delta effect size’ (the difference between the mean scores of healthy and self-reported groups divided by the standard deviation of the healthy group). To investigate the extent to which current MAUIs capture these dimensions, each MAUI was regressed on each dimension of HRQL, CWB and SWB. There were lots of interesting findings. Unsurprisingly, the most important dimensions were in the psychosocial dimensions of HRQL (e.g. the ‘coping’, ‘happiness’, and ‘self-worth’ dimensions of the AQoL-8D). Interestingly, the ICECAP-A proved to be the best measure for distinguishing between healthy individuals and those with depression. The SWB measures, on the other hand, were less impacted by depression. Of the MAUIs, the AQoL-8D was the most sensitive, whilst our beloved EQ-5D-5L and SF-6D were the least sensitive at distinguishing dimensions. There is a huge amount to unpack within this study, but it does raise interesting questions regarding measurement issues and the impact of broadening the evaluative space for decision makers. Finally, it’s worth noting that a new MAUI (ReQoL) for mental health has been recently developed – although further testing is needed, this is something to consider in future.

Credits

Sam Watson’s journal round-up for 9th July 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Evaluating the 2014 sugar-sweetened beverage tax in Chile: an observational study in urban areas. PLoS Medicine [PubMedPublished 3rd July 2018

Sugar taxes are one of the public health policy options currently in vogue. Countries including Mexico, the UK, South Africa, and Sri Lanka all have sugar taxes. The aim of such levies is to reduce demand for the most sugary drinks, or if the tax is absorbed on the supply side, which is rare, to encourage producers to reduce the sugar content of their drinks. One may also view it as a form of Pigouvian taxation to internalise the public health costs associated with obesity. Chile has long had an ad valorem tax on soft drinks fixed at 13%, but in 2014 decided to pursue a sugar tax approach. Drinks with more than 6.25g/100ml saw their tax rate rise to 18% and the tax on those below this threshold dropped to 10%. To understand what effect this change had, we would want to know three key things along the causal pathway from tax policy to sugar consumption: did people know about the tax change, did prices change, and did consumption behaviour change. On this latter point, we can consider both the overall volume of soft drinks and whether people substituted low sugar for high sugar beverages. Using the Kantar Worldpanel, a household panel survey of purchasing behaviour, this paper examines these questions.

Everyone in Chile was affected by the tax so there is no control group. We must rely on time series variation to identify the effect of the tax. Sometimes, looking at plots of the data reveals a clear step-change when an intervention is introduced (e.g. the plot in this post), not so in this paper. We therefore rely heavily on the results of the model for our inferences, and I have a couple of small gripes with it. First, the model captures household fixed effects, but no consideration is given to dynamic effects. Some households may be more or less likely to buy drinks, but their decisions are also likely to be affected by how much they’ve recently bought. Similarly, the errors may be correlated over time. Ignoring dynamic effects can lead to large biases. Second, the authors choose among different functional form specifications of time using Akaike Information Criterion (AIC). While AIC and the Bayesian Information Criterion (BIC) are often thought to be interchangeable, they are not; AIC estimates predictive performance on future data, while BIC estimates goodness of fit to the data. Thus, I would think BIC would be more appropriate. Additional results show the estimates are very sensitive to the choice of functional form by an order of magnitude and in sign. The authors estimate a fairly substantial decrease of around 22% in the volume of high sugar drinks purchased, but find evidence that the price paid changed very little (~1.5%) and there was little change in other drinks. While the analysis is generally careful and well thought out, I am not wholly convinced by the authors’ conclusions that “Our main estimates suggest a significant, sizeable reduction in the volume of high-tax soft drinks purchased.”

A Bayesian framework for health economic evaluation in studies with missing data. Health Economics [PubMedPublished 3rd July 2018

Missing data is a ubiquitous problem. I’ve never used a data set where no observations were missing and I doubt I’m alone. Despite its pervasiveness, it’s often only afforded an acknowledgement in the discussion or perhaps, in more complete analyses, something like multiple imputation will be used. Indeed, the majority of trials in the top medical journals don’t handle it correctly, if at all. The majority of the methods used for missing data in practice assume the data are ‘missing at random’ (MAR). One interpretation is that this means that, conditional on the observable variables, the probability of data being missing is independent of unobserved factors influencing the outcome. Another interpretation is that the distribution of the potentially missing data does not depend on whether they are actually missing. This interpretation comes from factorising the joint distribution of the outcome Y and an indicator of whether the datum is observed R, along with some covariates X, into a conditional and marginal model: f(Y,R|X) = f(Y|R,X)f(R|X), a so-called pattern mixture model. This contrasts with the ‘selection model’ approach: f(Y,R|X) = f(R|Y,X)f(Y|X).

This paper considers a Bayesian approach using the pattern mixture model for missing data for health economic evaluation. Specifically, the authors specify a multivariate normal model for the data with an additional term in the mean if it is missing, i.e. the model of f(Y|R,X). A model is not specified for f(R|X). If it were then you would typically allow for correlation between the errors in this model and the main outcomes model. But, one could view the additional term in the outcomes model as some function of the error from the observation model somewhat akin to a control function. Instead, this article uses expert elicitation methods to generate a prior distribution for the unobserved terms in the outcomes model. While this is certainly a legitimate way forward in my eyes, I do wonder how specification of a full observation model would affect the results. The approach of this article is useful and they show that it works, and I don’t want to detract from that but, given the lack of literature on missing data in this area, I am curious to compare approaches including selection models. You could even add shared parameter models as an alternative, all of which are feasible. Perhaps an idea for a follow-up study. As a final point, the models run in WinBUGS, but regular readers will know I think Stan is the future for estimating Bayesian models, especially in light of the problems with MCMC we’ve discussed previously. So equivalent Stan code would have been a bonus.

Trade challenges at the World Trade Organization to national noncommunicable disease prevention policies: a thematic document analysis of trade and health policy space. PLoS Medicine [PubMed] Published 26th June 2018

This is an economics blog. But focusing solely on economics papers in these round-ups would mean missing out on some papers from related fields that may provide insight into our own work. Thus I present to you a politics and sociology paper. It is not my field and I can’t give a reliable appraisal of the methods, but the results are of interest. In the global fight against non-communicable diseases, there is a range of policy tools available to governments, including the sugar tax of the paper at the top. The WHO recommends a large number. However, there is ongoing debate about whether trade rules and agreements are used to undermine this public health legislation. One agreement, the Technical Barriers to Trade (TBT) Agreement that World Trade Organization (WTO) members all sign, states that members may not impose ‘unnecessary trade costs’ or barriers to trade, especially if the intended aim of the measure can be achieved without doing so. For example, Philip Morris cited a bilateral trade agreement when it sued the Australian government for introducing plain packaging claiming it violated the terms of trade. Philip Morris eventually lost but not after substantial costs were incurred. In another example, the Thai government were deterred from introducing a traffic light warning system for food after threats of a trade dispute from the US, which cited WTO rules. However, there was no clear evidence on the extent to which trade disputes have undermined public health measures.

This article presents results from a new database of all TBT WTO challenges. Between 1995 and 2016, 93 challenges were raised concerning food, beverage, and tobacco products, the number per year growing over time. The most frequent challenges were over labelling products and then restricted ingredients. The paper presents four case studies, including Indonesia delaying food labelling of fat, sugar, and salt after challenge by several members including the EU, and many members including the EU again and the US objecting to the size and colour of a red STOP sign that Chile wanted to put on products containing high sugar, fat, and salt.

We have previously discussed the politics and political economy around public health policy relating to e-cigarettes, among other things. Understanding the political economy of public health and phenomena like government failure can be as important as understanding markets and market failure in designing effective interventions.

Credits

Sam Watson’s journal round-up for 25th June 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

The efficiency of slacking off: evidence from the emergency department. Econometrica [RePEc] Published May 2018

Scheduling workers is a complex task, especially in large organisations such as hospitals. Not only should one consider when different shifts start throughout the day, but also how work is divided up over the course of each shift. Physicians, like anyone else, value their leisure time and want to go home at the end of a shift. Given how they value this leisure time, as the end of a shift approaches physicians may behave differently. This paper explores how doctors in an emergency department behave at ‘end of shift’, in particular looking at whether doctors ‘slack off’ by accepting fewer patients or tasks and also whether they rush to finish those tasks they have. Both cases can introduce inefficiency by either under-using their labour time or using resources too intensively to complete something. Immediately, from the plots of the raw data, it is possible to see a drop in patients ‘accepted’ both close to end of shift and close to the next shift beginning (if there is shift overlap). Most interestingly, after controlling for patient characteristics, time of day, and day of week, there is a decrease in the length of stay of patients accepted closer to the end of shift, which is ‘dose-dependent’ on time to end of shift. There are also marked increases in patient costs, orders, and inpatient admissions in the final hour of the shift. Assuming that only the number of patients assigned and not the type of patient changes over the course of a shift (a somewhat strong assumption despite the additional tests), then this would suggest that doctors are rushing care and potentially providing sub-optimal or inefficient care closer to the end of their shift. The paper goes on to explore optimal scheduling on the basis of the results, among other things, but ultimately shows an interesting, if not unexpected, pattern of physician behaviour. The results relate mainly to efficiency, but it’d be interesting to see how they relate to quality in the form of preventable errors.

Semiparametric estimation of longitudinal medical cost trajectory. Journal of the American Statistical Association Published 19th June 2018

Modern computational and statistical methods have opened up a range of statistical models to estimation hitherto inestimable. This includes complex latent variable structures, non-linear models, and non- and semi-parametric models. Recently we covered the use of splines for semi-parametric modelling in our Method of the Month series. Not that complexity is everything of course, but given this rich toolbox to more faithfully replicate the data generating process, one does wonder why the humble linear model estimated with OLS remains so common. Nevertheless, I digress. This paper addresses the problem of estimating the medical cost trajectory for a given disease from diagnosis to death. There are two key issues: (i) the trajectory is likely to be non-linear with costs probably increasing near death and possibly also be higher immediately after diagnosis (a U-shape), and (ii) we don’t observe the costs of those who die, i.e. there is right-censoring. Such a set-up is also applicable in other cases, for example looking at health outcomes in panel data with informative dropout. The authors model medical costs for each month post-diagnosis and time of censoring (death) by factorising their joint distribution into a marginal model for censoring and a conditional model for medical costs given the censoring time. The likelihood then has contributions from the observed medical costs and their times, and the times of the censored outcomes. We then just need to specify the individual models. For medical costs, they use a multivariate normal with mean function consisting of a bivariate spline of time and time of censoring. The time of censoring is modelled non-parametrically. This setup of the missing data problem is sometimes referred to as a pattern mixing model, in that the outcome is modelled as a mixture density over different populations dying at different times. The authors note another possibility for informative missing data, which was considered not to be estimable for complex non-linear structures, was the shared parameter model (to soon appear in another Method of the Month) that assumes outcomes and dropout are independent conditional on an underlying latent variable. This approach can be more flexible, especially in cases with varying treatment effects. One wonders if the mixed model representation of penalised splines wouldn’t fit nicely in a shared parameter framework and provide at least as good inferences. An idea for a future paper perhaps… Nevertheless, the authors illustrate their method by replicating the well-documented U-shaped costs from the time of diagnosis in patients with stage IV breast cancer.

Do environmental factors drive obesity? Evidence from international graduate students. Health Economics [PubMedPublished 21st June 2018

‘The environment’ can encompass any number of things including social interactions and networks, politics, green space, and pollution. Sometimes referred to as ‘neighbourhood effects’, the impact of the shared environment above and beyond the effect of individual risk factors is of great interest to researchers and policymakers alike. But there are a number of substantive issues that hinder estimation of neighbourhood effects. For example, social stratification into neighbourhoods likely means people living together are similar so it is difficult to compare like with like across neighbourhoods; trying to model neighbourhood choice will also, therefore, remove most of the variation in the data. Similarly, this lack of common support, i.e. overlap, between people from different neighbourhoods means estimated effects are not generalisable across the population. One way of getting around these problems is simply to randomise people to neighbourhoods. As odd as that sounds, that is what occurred in the Moving to Opportunity experiments and others. This paper takes a similar approach in trying to look at neighbourhood effects on the risk of obesity by looking at the effects of international students moving to different locales with different local obesity rates. The key identifying assumption is that the choice to move to different places is conditionally independent of the local obesity rate. This doesn’t seem a strong assumption – I’ve never heard a prospective student ask about the weight of our student body. Some analysis supports this claim. The raw data and some further modelling show a pretty strong and robust relationship between local obesity rates and weight gain of the international students. Given the complexity of the causes and correlates of obesity (see the crazy diagram in this post) it is hard to discern why certain environments contribute to obesity. The paper presents some weak evidence of differences in unhealthy behaviours between high and low obesity places – but this doesn’t quite get at the environmental link, such as whether these behaviours are shared through social networks or perhaps the structure and layout of the urban area, for example. Nevertheless, here is some strong evidence that living in an area where there are obese people means you’re more likely to become obese yourself.

Credits