Chris Sampson’s journal round-up for 12th August 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Developing open-source models for the US health system: practical experiences and challenges to date with the Open-Source Value Project. PharmacoEconomics [PubMed] Published 7th August 2019

PharmacoEconomics will soon publish a themed issue on transparency in decision modelling (to which I’ve contributed), and this paper – I assume – is one that will feature. At least one output from the Open-Source Value Project has featured in these round-ups before. The purpose of this paper is to describe the experiences of the initiative in developing and releasing two open-source models, one in rheumatoid arthritis and one in lung cancer.

The authors outline the background to the project and its goal to develop credible models that are more tuned-in to stakeholders’ needs. By sharing the R and C++ source code, developing interactive web applications, and providing extensive documentation, the models are intended to be wholly transparent and flexible. The model development process also involves feedback from experts and the public, followed by revision and re-release. It’s a huge undertaking. The paper sets out the key challenges associated with this process, such as enabling stakeholders with different backgrounds to understand technical models and each other. The authors explain how they have addressed such difficulties along the way. The resource implications of this process are also challenging, because the time and expertise required are much greater than for run-of-the-mill decision models. The advantages of the tools used by the project, such as R and GitHub, are explained, and the paper provides some ammunition for the open-source movement. One of the best parts of the paper is the authors’ challenge to those who question open-source modelling on the basis of intellectual property concerns. For example, they state that, “Claiming intellectually property on the implementation of a relatively common modeling approach in Excel or other programming software, such as a partitioned survival model in oncology, seems a bit pointless.” Agreed.

The response to date from the community has been broadly positive, though there has been a lack of engagement from US decision-makers. Despite this, the initiative has managed to secure adequate funding. This paper is a valuable read for anyone involved in open-source modelling or in establishing a collaborative platform for the creation and dissemination of research tools.

Incorporating affordability concerns within cost-effectiveness analysis for health technology assessment. Value in Health Published 30th July 2019

The issue of affordability is proving to be a hard nut to crack for health economists. That’s probably because we’ve spent a very long time conducting incremental cost-effectiveness analyses that pay little or no attention to the budget constraint. This paper sets out to define a framework that finally brings affordability into the fold.

The author sets up an example with a decision-maker that seeks to maximise population health with a fixed budget – read, HTA agency – and the motivating example is new medicines for hepatitis C. The core of the proposal is an alternative decision rule. Rather than simply comparing the incremental cost-effectiveness ratio (ICER) to a fixed threshold, it incorporates a threshold that is a function of the budget impact. At it’s most basic, a bigger budget impact (all else equal) means a greater opportunity cost and thus a lower threshold. The author suggests doing away with the ICER (which is almost impossible to work with) and instead using net health benefits. In this framework, whether or not net health benefit is greater than zero depends on the size of the budget impact at any given ICER. If we accept the core principle that budget impact should be incorporated into the decision rule, it raises two other issues – time and uncertainty – which are also addressed in the paper. The framework moves us beyond the current focus on net present value, which ignores the distribution of costs over time beyond simply discounting future expenditure. Instead, the opportunity cost ‘threshold’ depends on the budget impact in each time period. The description of the framework also addresses uncertainty in budget impact, which requires the estimation of opportunity costs in each iteration of a probabilistic analysis.

The paper is thorough in setting out the calculations needed to implement this framework. If you’re conducting an economic evaluation of a technology that could have a non-marginal (big) budget impact, you should tag this on to your analysis plan. Once researchers start producing these estimates, we’ll be able to understand how important these differences could be for resource allocation decision-making and determine whether the likes of NICE ought to incorporate it into their methods guide.

Did UberX reduce ambulance volume? Health Economics [PubMed] [RePEc] Published 24th June 2019

In London, you can probably – at most times of day – get an Uber quicker than you can get an ambulance. That isn’t necessarily a bad thing, as ambulances aren’t there to provide convenience. But it does raise an interesting question. Could the availability of super-fast, low-cost, low-effort taxi hailing reduce pressure on ambulance services? If so, we might anticipate the effect to be greatest where people have to actually pay for ambulances.

This study combines data on Uber market entry in the US, by state and city, with ambulance rates. Between Q1 2012 and Q4 2015, the proportion of the US population with access to Uber rose from 0% to almost 25%. The authors are also able to distinguish ‘lights and sirens’ ambulance rides from ‘no lights and sirens’ rides. A difference-in-differences model estimates the ambulance rate for a given city by quarter-year. The analysis suggests that there was a significant decline in ambulance rates in the years following Uber’s entry to the market, implying an average of 1.2 fewer ambulance trips per 1,000 population per quarter.

There are some questionable results in here, including the fact that a larger effect was found for the ‘lights and sirens’ ambulance rate, so it’s not entirely clear what’s going on. The authors describe a variety of robustness checks for our consideration. Unfortunately, the discussion of the results is lacking in detail and insight, so readers need to figure it out themselves. I’d be very interested to see a similar analysis in the UK. I suspect that I would be inclined to opt for an Uber over an ambulance in many cases. And I wouldn’t have the usual concern about Uber exploiting its drivers, as I dare say ambulance drivers aren’t treated much better.

Credits

Chris Sampson’s journal round-up for 18th February 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

An educational review about using cost data for the purpose of cost-effectiveness analysis. PharmacoEconomics [PubMed] Published 12th February 2019

Costing can seem like a cinderella method in the health economist’s toolkit. If you’re working on an economic evaluation, estimating resource use and costs can be tedious. That is perhaps why costing methodology has been relatively neglected in the literature compared to health state valuation (for example). This paper tries to redress the balance slightly by providing an overview of the main issues in costing, explaining why they’re important, so that we can do a better job. The issues are more complex than many assume.

Supported by a formidable reference list (n=120), the authors tackle 9 issues relating to costing: i) costs vs resource use; ii) trial-based vs model-based evaluations; iii) costing perspectives; iv) data sources; v) statistical methods; vi) baseline adjustments; vii) missing data; viii) uncertainty; and ix) discounting, inflation, and currency. It’s a big paper with a lot to say, so it isn’t easily summarised. Its role is as a reference point for us to turn to when we need it. There’s a stack of papers and other resources cited in here that I wasn’t aware of. The paper itself doesn’t get technical, leaving that to the papers cited therein. But the authors provide a good discussion of the questions that ought to be addressed by somebody designing a study, relating to data collection and analysis.

The paper closes with some recommendations. The main one is that people conducting cost-effectiveness analysis should think harder about why they’re making particular methodological choices. The point is also made that new developments could change the way we collect and analyse cost data. For example, the growing use of observational data demands that greater consideration be given to unobserved confounding. Costing methods are important and interesting!

A flexible open-source decision model for value assessment of biologic treatment for rheumatoid arthritis. PharmacoEconomics [PubMed] Published 9th February 2019

Wherever feasible, decision models should be published open-source, so that they can be reviewed, reused, recycled, or, perhaps, rejected. But open-source models are still a rare sight. Here, we have one for rheumatoid arthritis. But the paper isn’t really about the model. After all, the model and supporting documentation are already available online. Rather, the paper describes the reasoning behind publishing a model open-source, and the process for doing so in this case.

This is the first model released as part of the Open Source Value Project, which tries to convince decision-makers that cost-effectiveness models are worth paying attention to. That is, it’s aimed at the US market, where models are largely ignored. The authors argue that models need to be flexible to be valuable into the future and that, to achieve this, four steps should be followed in the development: 1) release the initial model, 2) invite feedback, 3) convene an expert panel to determine actions in light of the feedback, and 4) revise the model. Then, repeat as necessary. Alongside this, people with the requisite technical skills (i.e. knowing how to use R, C++, and GitHub) can proffer changes to the model whenever they like. This paper was written after step 3 had been completed, and the authors report receiving 159 comments on their model.

The model itself (which you can have a play with here) is an individual patient simulation, which is set-up to evaluate a variety of treatment scenarios. It estimates costs and (mapped) QALYs and can be used to conduct cost-effectiveness analysis or multi-criteria decision analysis. The model was designed to be able to run 32 different model structures based on different assumptions about treatment pathways and outcomes, meaning that the authors could evaluate structural uncertainties (which is a rare feat). A variety of approaches were used to validate the model.

The authors identify several challenges that they experienced in the process, including difficulties in communication between stakeholders and the large amount of time needed to develop, test, and describe a model of this sophistication. I would imagine that, compared with most decision models, the amount of work underlying this paper is staggering. Whether or not that work is worthwhile depends on whether researchers and policymakers make us of the model. The authors have made it as easy as possible for stakeholders to engage with and build on their work, so they should be hopeful that it will bear fruit.

EQ-5D-Y-5L: developing a revised EQ-5D-Y with increased response categories. Quality of Life Research [PubMed] Published 9th February 2019

The EQ-5D-Y has been a slow burner. It’s been around 10 years since it first came on the scene, but we’ve been without a value set and – with the introduction of the EQ-5D-5L – the questionnaire has lost some comparability with its adult equivalent. But the EQ-5D-Y has almost caught-up, and this study describes part of how that’s been achieved.

The reason to develop a 5L version for the EQ-5D-Y is the same as for the adult version – to reduce ceiling effects and improve sensitivity. A selection of possible descriptors was identified through a review of the literature. Focus groups were conducted with children between 8 and 15 years of age in Germany, Spain, Sweden, and the UK in order to identify labels that can be understood by young people. Specifically, the researchers wanted to know the words used by children and adolescents to describe the quantity or intensity of health problems. Participants ranked the labels according to severity and specified which labels they didn’t like. Transcripts were analysed using thematic content analysis. Next, individual interviews were conducted with 255 participants across the four countries, which involved sorting and response scaling tasks. Younger children used a smiley scale. At this stage, both 4L and 5L versions were being considered. In a second phase of the research, cognitive interviews were used to test for comprehensibility and feasibility.

A 5-level version was preferred by most, and 5L labels were identified in each language. The English version used terms like ‘a little bit’, ‘a lot’, and ‘really’. There’s plenty more research to be done on the EQ-5D-Y-5L, including psychometric testing, but I’d expect it to be coming to studies near you very soon. One of the key takeaways from this study, and something that I’ve been seeing more in research in recent years, is that kids are smart. The authors make this point clear, particulary with respect to the response scaling tasks that were conducted with children as young as 8. Decision-making criteria and frameworks that relate to children should be based on children’s preferences and ideas.

Credits

Chris Sampson’s journal round-up for 17th September 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Does competition from private surgical centres improve public hospitals’ performance? Evidence from the English National Health Service. Journal of Public Economics Published 11th September 2018

This study looks at proper (supply-side) privatisation in the NHS. The subject is the government-backed introduction of Independent Sector Treatment Centres (ISTCs), which, in the name of profit, provide routine elective surgical procedures to NHS patients. ISTCs were directed to areas with high waiting times and began rolling out from 2003.

The authors take pre-surgery length of stay as a proxy for efficiency and hypothesise that the entry of ISTCs would improve efficiency in nearby NHS hospitals. They also hypothesise that the ISTCs would cream-skim healthier patients, leaving NHS hospitals to foot the bill for a more challenging casemix. Difference-in-difference regressions are used to test these hypotheses, the treatment group being those NHS hospitals close to ISTCs and the control being those not likely to be affected. The authors use patient-level Hospital Episode Statistics from 2002-2008 for elective hip and knee replacements.

The key difficulty here is that the trend in length of stay changed dramatically at the time ISTCs began to be introduced, regardless of whether a hospital was affected by their introduction. This is because there was a whole suite of policy and structural changes being implemented around this period, many targeting hospital efficiency. So we’re looking at comparing new trends, not comparing changes in existing levels or trends.

The authors’ hypotheses prove right. Pre-surgery length of stay fell in exposed hospitals by around 16%. The ISTCs engaged in risk selection, meaning that NHS hospitals were left with sicker patients. What’s more, the savings for NHS hospitals (from shorter pre-surgery length of stay) were more than undermined by an increase in post-surgery length of stay, which may have been due to the change in casemix.

I’m not sure how useful difference-in-difference is in this case. We don’t know what the trend would have been without the intervention because the pre-intervention trend provides no clues about it and, while the outcome is shown to be unrelated to selection into the intervention, we don’t know whether selection into the ISTC intervention was correlated with exposure to other policy changes. The authors do their best to quell these concerns about parallel trends and correlated policy shocks, and the results appear robust.

Broadly speaking, the study satisfies my prior view of for-profit providers as leeches on the NHS. Still, I’m left a bit unsure of the findings. The problem is, I don’t see the causal mechanism. Hospitals had the financial incentive to be efficient and achieve a budget surplus without competition from ISTCs. It’s hard (for me, at least) to see how reduced length of stay has anything to do with competition unless hospitals used it as a basis for getting more patients through the door, which, given that ISTCs were introduced in areas with high waiting times, the hospitals could have done anyway.

While the paper describes a smart and thorough analysis, the findings don’t tell us whether ISTCs are good or bad. Both the length of stay effect and the casemix effect are ambiguous with respect to patient outcomes. If only we had some PROMs to work with…

One method, many methodological choices: a structured review of discrete-choice experiments for health state valuation. PharmacoEconomics [PubMed] Published 8th September 2018

Discrete choice experiments (DCEs) are in vogue when it comes to health state valuation. But there is disagreement about how they should be conducted. Studies can differ in terms of the design of the choice task, the design of the experiment, and the analysis methods. The purpose of this study is to review what has been going on; how have studies differed and what could that mean for our use of the value sets that are estimated?

A search of PubMed for valuation studies using DCEs – including generic and condition-specific measures – turned up 1132 citations, of which 63 were ultimately included in the review. Data were extracted and quality assessed.

The ways in which the studies differed, and the ways in which they were similar, hint at what’s needed from future research. The majority of recent studies were conducted online. This could be problematic if we think self-selecting online panels aren’t representative. Most studies used five or six attributes to describe options and many included duration as an attribute. The methodological tweaks necessary to anchor at 0=dead were a key source of variation. Those using duration varied in terms of the number of levels presented and the range of duration (from 2 months to 50 years). Other studies adopted alternative strategies. In DCE design, there is a necessary trade-off between statistical efficiency and the difficulty of the task for respondents. A variety of methods have been employed to try and ease this difficulty, but there remains a lack of consensus on the best approach. An agreed criterion for this trade-off could facilitate consistency. Some of the consistency that does appear in the literature is due to conformity with EuroQol’s EQ-VT protocol.

Unfortunately, for casual users of DCE valuations, all of this means that we can’t just assume that a DCE is a DCE is a DCE. Understanding the methodological choices involved is important in the application of resultant value sets.

Trusting the results of model-based economic analyses: is there a pragmatic validation solution? PharmacoEconomics [PubMed] Published 6th September 2018

Decision models are almost never validated. This means that – save for a superficial assessment of their outputs – they are taken at good faith. That should be a worry. This article builds on the experience of the authors to outline why validation doesn’t take place and to try to identify solutions. This experience includes a pilot study in France, NICE Evidence Review Groups, and the perspective of a consulting company modeller.

There are a variety of reasons why validation is not conducted, but resource constraints are a big part of it. Neither HTA agencies, nor modellers themselves, have the time to conduct validation and verification exercises. The core of the authors’ proposed solution is to end the routine development of bespoke models. Models – or, at least, parts of models – need to be taken off the shelf. Thus, open source or otherwise transparent modelling standards are a prerequisite for this. The key idea is to create ‘standard’ or ‘reference’ models, which can be extensively validated and tweaked. The most radical aspect of this proposal is that they should be ‘freely available’.

But rather than offering a path to open source modelling, the authors offer recommendations for how we should conduct ourselves until open source modelling is realised. These include the adoption of a modular and incremental approach to modelling, combined with more transparent reporting. I agree; we need a shift in mindset. Yet, the barriers to open source models are – I believe – the same barriers that would prevent these recommendations from being realised. Modellers don’t have the time or the inclination to provide full and transparent reporting. There is no incentive for modellers to do so. The intellectual property value of models means that public release of incremental developments is not seen as a sensible thing to do. Thus, the authors’ recommendations appear to me to be dependent on open source modelling, rather than an interim solution while we wait for it. Nevertheless, this is the kind of innovative thinking that we need.

Credits