Thesis Thursday: David Mott

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr David Mott who has a PhD from Newcastle University. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
How do preferences for public health interventions differ? A case study using a weight loss maintenance intervention
Supervisors
Luke Vale, Laura Ternent
Repository link
http://hdl.handle.net/10443/4197

Why is it important to understand variation in people’s preferences?

It’s not all that surprising that people’s preferences for health care interventions vary, but we don’t have a great understanding of what might drive these differences. Increasingly, preference information is being used to support regulatory decisions and, to a lesser but increasing extent, health technology assessments. It could be the case that certain subgroups of individuals would not accept the risks associated with a particular health care intervention, whereas others would. Therefore, identifying differences in preferences is important. However, it’s also useful to try to understand why this heterogeneity might occur in the first place.

The debate on whose preferences to elicit for health state valuation has traditionally focused on those with experience (e.g. patients) and those without (e.g. the general population). Though this dichotomy is problematic; it has been shown that health state utilities systematically differ between these two groups, presumably due to the difference in relative experience. My project aimed to explore whether experience also affects people’s preferences for health care interventions.

How did you identify different groups of people, whose preferences might differ?

The initial plan for the project was to elicit preferences for a health care intervention from general population and patient samples. However, after reviewing the literature, it seemed highly unlikely that anyone would advocate for preferences for treatments to be elicited from general population samples. It has long been suggested that discrete choice experiments (DCEs) could be used to incorporate patient preferences into decision-making, and it turned out that patients were the focus of the majority of the DCE studies that I reviewed. Given this, I took a more granular approach in my empirical work.

We recruited a very experienced group of ‘service users’ from a randomised controlled trial (RCT). In this case, it was a novel weight loss maintenance intervention aimed at helping obese adults that had lost at least 5% of their overall weight to maintain their weight loss. We also recruited an additional three groups from an online panel. The first group were ‘potential service users’ – those that met the trial criteria but could not have experienced the intervention. The second group were ‘potential beneficiaries’ – those that were obese or overweight and did not meet the trial criteria. The final group were ‘non-users’ – those with a normal BMI.

What can your study tell us about preferences in the context of a weight loss maintenance intervention?

The empirical part of my study involved a DCE and an open-ended contingent valuation (CV) task. The DCE was focused on the delivery of the trial intervention, which was a technology-assisted behavioural intervention. It had a number of different components but, briefly, it involved participants weighing themselves regularly on a set of ‘smart scales’, which enabled the trial team to access and monitor the data. Participants received text messages from the trial team with feedback, reminders to weigh themselves (if necessary), and links to online tools and content to support the maintenance of their weight loss.

The DCE results suggested that preferences for the various components of the intervention varied significantly between individuals and between the different groups – and not all were important. In contrast, the efficacy and cost attributes were important across the board. The CV results suggested that a very significant proportion of individuals would be willing to pay for an effective intervention (i.e. that avoided weight regain), with very few respondents expressing a willingness to pay for an intervention that led to more than 10-20% weight regain.

Do alternative methods for preference elicitation provide a consistent picture of variation in preferences?

Existing evidence suggests that willingness to pay (WTP) estimates from CV tasks might differ from those derived from DCE data, but there aren’t a lot of empirical studies on this in health. Comparisons were planned in my study, but the approach taken in the end was suboptimal and ultimately inconclusive. The original plan was to obtain WTP estimates for an entire WLM intervention using the DCE and to compare this with the estimates from the CV task. Due to data limitations, it wasn’t possible to make this comparison. However, the CV task was a bit unusual because we asked for respondents’ WTP at various different efficacy levels. So instead the comparison made was between average WTP values for a percentage point of weight re-gain. The differences were statistically insignificant.

Are some people’s preferences ‘better defined’ than others’?

We hypothesised that those with experience of the trial intervention would have ‘better defined’ preferences. To explore this, we compared the data quality across the different user groups. From a quick glance at the DCE results, it is pretty clear that the data were much better for the most experienced group; the coefficients were larger, and a much higher proportion was statistically significant. However, more interestingly, we found that the most experienced group were 23% more likely to have passed all of the rationality tests that were embedded in the DCE. Therefore, if you accept that better quality data is an indicator of ‘better defined’ preferences, then the data do seem reasonably supportive of the hypothesis. That being said, there were no significant differences between the other three groups, begging the question: was it the difference in experience, or some other difference between RCT participants and online panel respondents?

What does your research imply for the use of preferences in resource allocation decisions?

While there are still many unanswered questions, and there is always a need for further research, the results from my PhD project suggest that preferences for health care interventions can differ significantly between respondents with differing levels of experience. Had my project been applied to a more clinical intervention that is harder for an average person to imagine experiencing, I would expect the differences to have been much larger. I’d love to see more research in this area in future, especially in the context of benefit-risk trade-offs.

The key message is that the level of experience of the participants matters. It is quite reasonable to believe that a preference study focusing on a particular subgroup of patients will not be generalisable to the broader patient population. As preference data, typically elicited from patients, is increasingly being used in decision-making – which is great – it is becoming increasingly important for researchers to make sure that their respondent samples are appropriate to support the decisions that are being made.

Thesis Thursday: Alastair Irvine

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Alastair Irvine who has a PhD from the University of Aberdeen. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
Time preferences and the patient-doctor interaction
Supervisors
Marjon van der Pol, Euan Phimister
Repository link
http://digitool.abdn.ac.uk/webclient/DeliveryManager?pid=238373

How can people’s time preferences affect the way they use health care?

Time preferences are a way of thinking about how people choose between things that happen over time. Some people prefer a treatment with large side effects and a long chain of future benefits; others prefer smaller benefits but less side effects. These influence a wide range of health outcomes and decisions. One of the most interesting questions I had coming into the PhD was around non-adherence.

Non-adherence can’t be captured by ‘standard’ exponential time preferences because there is no way for something you prefer now to be ‘less preferred’ in the future if everything is held constant. Instead, present-bias preferences can capture non-adherent behaviour. With these preferences, people place a higher weight on the ‘current period’ relative to all future periods but weight all future periods consistently. What that means is you can have a situation where you plan to do something – eat healthily, take your medication – but end up not doing it. When planning, you placed less relative weight on the near term ‘cost’ (like medication side effects) than you do when the decision arrives.

In what way might the patient-doctor interaction affect a patient’s adherence to treatment?

There’s asymmetric information between doctors and patient, leading to an agency relationship. Doctors in general know more about treatment options than patients, and don’t know their patient’s preferences. So if doctors are making recommendations to patients, this asymmetry can lead to recommendations that are accepted by the patient but not adhered to. For example, present-biased patients accept the same treatments as exponential discounters. Depending on the treatment parameters, present-biased people will not adhere to some treatments. If the doctor doesn’t anticipate this when making recommendations, it leads to non-adherence.

One of the issues from a contracting perspective is that naive present-bias people don’t anticipate their own non-adherence, so we can’t write traditional ‘separating contracts’ that lead present-bias people to one treatment and exponential discounters to another. However, if the doctor can offer a lower level of treatment to all patients – one that has less side effects and a concomitantly lower benefit – then everyone sticks to that treatment. This clearly comes at the expense of the exponential discounters’ health, but if the proportion of present-bias is high enough it can be an efficient outcome.

Were you able to compare the time preferences of patients and of doctors?

Not this time! It had been the ‘grand plan’ at the start of the PhD to compare matched doctor and patient time preferences then link it to treatment choices but that was far too ambitious for the time, and there had been very little work establishing how time preferences work in the patient-doctor interaction so I felt we had a lot to do.

One interesting question we did ask was whether doctors’ time preferences for themselves were the same as for their patients. A lot of the existing evidence asks doctors for their own time preferences, but surely the important time preference is the one they apply to their patients?

We found that while there was little difference between these professional and private time preferences, a lot of the responses displayed increasing impatience. This means that as the start of treatment gets pushed further into the future, doctors started to prefer shorter-but-sooner benefits for themselves and their patients. We’re still thinking about whether this reflects that in the real world (outside the survey) doctors already account for the time patients have spent with symptoms when assessing how quickly a treatment benefit should arrive.

How could doctors alter their practice to reduce non-adherence?

We really only have two options – to make ‘the right thing’ easier or the ‘wrong thing’ more costly. The implication of present-bias is you need to use less intense treatments because the problem is the (relative) over-weighting of the side effects. The important thing we need for that is good information on adherence.

We could pay people to adhere to treatment. However, my gut feeling is that payments are hard to implement on the patient side without being coercive (e.g making non-adherence costly with charges) or expensive for the implementer when identification of completion is tricky (giving bonuses to doctors based on patient health outcomes). So doctors can reduce non-adherence by anticipating it, and offering less ‘painful’ treatments.

It’s important to say I was only looking at one kind of non-adherence. If patients have bad experiences then whatever we do shouldn’t keep them taking a treatment they don’t want. However, the fact that stopping treatment is always an option for the patient makes non-adherence hard to address because as an economist you would like to separate different reasons for stopping. This is a difficulty for analysing non-adherence as a problem of temptation. In temptation preferences we would like to change the outcome set so that ‘no treatment’ is not a tempting choice, but there are real ethical and practical difficulties with that.

To what extent did the evidence generated by your research support theoretical predictions?

I designed a lab experiment that put students in the role of the doctor with patients that may or may not be present-biased. The participants had to recommend treatments to a series of hypothetical patients and was set up so that adapting to non-adherence with less intense treatments was best. Participants got feedback on their previous patients, to learn about which treatments patients stuck to over the rounds.

We paid one arm a salary, and another a ‘performance payment’. The latter only got paid when patients stuck to treatment and the pay correlated with the patient outcomes. In both arms, patients’ outcomes were reflected with a charity donation.

The main result is that there was a lot of adaptation to non-adherence in both arms. The adaptation was stronger under the performance payment, reflecting the upper limit of the adaptation we can expect because it perfectly aligns patient and doctor preferences.

In the experimental setting, even when there is no direct financial benefit of doing so, participants adapted to non-adherence in the way I predicted.

Simon McNamara’s journal round-up for 6th August 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Euthanasia, religiosity and the valuation of health states: results from an Irish EQ5D5L valuation study and their implications for anchor values. Health and Quality of Life Outcomes [PubMed] Published 31st July 2018

Do you support euthanasia? Do you think there are health states worse than death? Are you religious? Don’t worry – I am not commandeering this week’s AHE journal round-up just to bombard you with a series of difficult questions. These three questions form the foundation of the first article selected for this week’s round-up.

The paper is based upon the hypothesis that your religiosity (“adherence to religious beliefs”) is likely to impact your support for euthanasia and, subsequently, the likelihood of you valuing severe health states as worse than death. This seems like a logical hypothesis. Religions tend to be anti-euthanasia, and so it appears likely that religious people will have lower levels of support for euthanasia than non-religious people. Equally, if you don’t support the principle of euthanasia, it stands to reason that you are likely to be less willing to choose immediate death over living in a severe health state – something you would need to do for a health state to be considered as being worse than death in a time trade-off (TTO) study.

The authors test this hypothesis using a sub-sample of data (n=160) collected as part of the Irish EQ-5D-5L TTO valuation study. Perhaps unsurprisingly, the authors find evidence in support of the above hypotheses. Those that attend a religious service weekly were more likely to oppose euthanasia than those who attend a few times a year or less, and those who oppose euthanasia were less likely to give “worse than death” responses in the TTO than those that support it.

I found this paper really interesting, as it raises a number of challenging questions. If a society is made up of people with heterogeneous beliefs regarding religion, how should we balance these in the valuation of health? If a society is primarily non-religious is it fair to apply this valuation tariff to the lives of the religious, and vice versa? These certainly aren’t easy questions to answer, but may be worth reflecting on.

E-learning and health inequality aversion: A questionnaire experiment. Health Economics [PubMed] [RePEc] Published 22nd July 2018

Moving on from the cheery topic of euthanasia, what do you think about socioeconomic inequalities in health? In my home country, England, if you are from the poorest quintile of society, you can expect to experience 62 years in full health in your lifetime, whilst if you are from the richest quintile, you can expect to experience 74 years – a gap of 12 years.

In the second paper to be featured in this round-up, Cookson et al. explore the public’s willingness to sacrifice incremental population health gains in order to reduce these inequalities in health – their level of “health inequality aversion”. This is a potentially important area of research, as the vast majority of economic evaluation in health is distributionally-naïve and effectively assumes that members of the public aren’t at all concerned with inequalities in health.

The paper builds on prior work conducted by the authors in this area, in which they noted a high proportion of respondents in health inequality aversion elicitation studies appear to be so averse to inequalities that they violate monotonicity – they choose scenarios that reduce inequalities in health even if these scenarios reduce the health of the rich at no gain to the poor, or they reduce the health of the poor, or they may reduce the health of both groups. The authors hypothesise that these monotonicity violations may be due to incomplete thinking from participants, and suggest that the quality of their thinking could be improved by two e-learning educational interventions. The primary aim of the paper is to test the impact of these interventions in a sample of the UK public (n=60).

The first e-learning intervention was an animated video that described a range of potential positions that a respondent could take (e.g. health maximisation, or maximising the health of the worst off). The second was an interactive spreadsheet-based questionnaire that presented the consequences of the participant’s choices, prior to them confirming their selection. Both interventions are available online.

The authors found that the interactive tool significantly reduced the amount of extreme egalitarian (monotonicity-violating) responses, compared to a non-interactive, paper-based version of the study. Similarly, when the video was watched before completing the paper-based exercise, the number of extreme egalitarian responses reduced. However, when the video was watched before the interactive tool there was no further decrease in extreme egalitarianism. Despite this reduction in extreme egalitarianism, the median levels of inequality aversion remained high, with implied weights of 2.6 and 7.0 for QALY gains granted to someone from the poorest fifth of society, compared to the richest fifth of society for the interactive questionnaire and video groups respectively.

This is an interesting study that provides further evidence of inequality aversion, and raises further concern about the practical dominance of distributionally-naïve approaches to economic evaluation. The public does seem to care about distribution. Furthermore, the paper demonstrates that participant responses to inequality aversion exercises are shaped by the information given to them, and the way that information is presented. I look forward to seeing more studies like this in the future.

A new method for valuing health: directly eliciting personal utility functions. The European Journal of Health Economics [PubMed] [RePEc] Published 20th July 2018

Last, but not least, for this round-up, is a paper by Devlin et al. on a new method for valuing health.

The relative valuation of health states is a pretty important topic for health economists. If we are to quantify the effectiveness, and subsequently cost-effectiveness, of an intervention, we need to understand which health states are better than others, and how much better they are. Traditionally, this is done by asking members of the public to choose between different health profiles featuring differing levels of fulfilment of a range of domains of health, in order to ‘uncover’ the relative importance the respondent places on these domains, and levels. These can then be used in order to generate social tariffs that assign a utility value to a given health state for use in economic evaluation.

The authors point out that, in the modern day, valuation studies can be conducted rapidly, and at scale, online, but at the potential cost of deliberation from participants, and the resultant risk of heuristic dominated decision making. In response to this, the authors propose a new method – direct elicitation of personal utility functions, and pilot its use for the valuation of EQ-5D in a sample of the English public (n=76).

The proposed approach differs from traditional approaches in three key ways. Firstly, instead of simply attempting to infer the relative importance that participants place on differing domains based upon choices between health profiles, the respondents are asked directly about the relative importance they place on differing domains of health, prior to validating these with profile choices. Secondly, the authors place a heavy emphasis on deliberation, and the construction, rather than uncovering, of preferences during the elicitation exercises. Thirdly, a “personal utility function” for each individual is constructed (in effect a personal EQ-5D tariff), and these individual utility functions are subsequently aggregated into a social utility function.

In the pilot, the authors find that the method appears feasible for wider use, albeit with some teething troubles associated with the computer-based tool developed to implement it, and the skills of the interviewers.

This direct method raises an interesting question for health economics – should we be inferring preferences based upon choices that differ in terms of certain attributes, or should we just ask directly about the attributes? This is a tricky question. It is possible that the preferences elicited via these different approaches could result in different preferences – if they do, on what grounds should we choose one or other? This requires a normative judgment, and at present, it appears both are (potentially) as legitimate as each other.

Whilst the authors apply this direct method to the valuation of health, I don’t see why similar approaches couldn’t be applied to any multi-attribute choice experiment. Keep your eyes out for future uses of it in valuation, and perhaps beyond? It will be interesting to see how it develops.

Credits