Chris Sampson’s journal round-up for 11th June 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

End-of-life healthcare expenditure: testing economic explanations using a discrete choice experiment. Journal of Health Economics Published 7th June 2018

People incur a lot of health care costs at the end of life, despite the fact that – by definition – they aren’t going to get much value from it (so long as we’re using QALYs, anyway). In a 2007 paper, Gary Becker and colleagues put forward a theory for the high value of life and high expenditure on health care at the end of life. This article sets out to test a set of hypotheses derived from this theory, namely: i) higher willingness-to-pay (WTP) for health care with proximity to death, ii) higher WTP with greater chance of survival, iii) societal WTP exceeds individual WTP due to altruism, and iv) societal WTP may exceed individual WTP due to an aversion to restricting access to new end-of-life care. A further set of hypotheses relating to the ‘pain of risk-bearing’ is also tested. The authors conducted an online discrete choice experiment (DCE) with 1,529 Swiss residents, which asked respondents to suppose that they had terminal cancer and was designed to elicit WTP for a life-prolonging novel cancer drug. Attributes in the DCE included survival, quality of life, and ‘hope’ (chance of being cured). Individual WTP – using out-of-pocket costs – and societal WTP – based on social health insurance – were both estimated. The overall finding is that the hypotheses are on the whole true, at least in part. But the fact is that different people have different preferences – the authors note that “preferences with regard to end-of-life treatment are very heterogeneous”. The findings provide evidence to explain the prevailing high level of expenditure in end of life (cancer) care. But the questions remain of what we can or should do about it, if anything.

Valuation of preference-based measures: can existing preference data be used to generate better estimates? Health and Quality of Life Outcomes [PubMed] Published 5th June 2018

The EuroQol website lists EQ-5D-3L valuation studies for 27 countries. As the EQ-5D-5L comes into use, we’re going to see a lot of new valuation studies in the pipeline. But what if we could use data from one country’s valuation to inform another’s? The idea is that a valuation study in one country may be able to ‘borrow strength’ from another country’s valuation data. The author of this article has developed a Bayesian non-parametric model to achieve this and has previously applied it to UK and US EQ-5D valuations. But what about situations in which few data are available in the country of interest, and where the country’s cultural characteristics are substantially different. This study reports on an analysis to generate an SF-6D value set for Hong Kong, firstly using the Hong Kong values only, and secondly using the UK value set as a prior. As expected, the model which uses the UK data provided better predictions. And some of the differences in the valuation of health states are quite substantial (i.e. more than 0.1). Clearly, this could be a useful methodology, especially for small countries. But more research is needed into the implications of adopting the approach more widely.

Can a smoking ban save your heart? Health Economics [PubMed] Published 4th June 2018

Here we have another Swiss study, relating to the country’s public-place smoking bans. Exposure to tobacco smoke can have an acute and rapid impact on health to the extent that we would expect an immediate reduction in the risk of acute myocardial infarction (AMI) if a smoking ban reduces the number of people exposed. Studies have already looked at this effect, and found it to be large, but mostly with simple pre-/post- designs that don’t consider important confounding factors or prevailing trends. This study tests the hypothesis in a quasi-experimental setting, taking advantage of the fact that the 26 Swiss cantons implemented smoking bans at different times between 2007 and 2010. The authors analyse individual-level data from Swiss hospitals, estimating the impact of the smoking ban on AMI incidence, with area and time fixed effects, area-specific time trends, and unemployment. The findings show a large and robust effect of the smoking ban(s) for men, with a reduction in AMI incidence of about 11%. For women, the effect is weaker, with an average reduction of around 2%. The evidence also shows that men in low-education regions experienced the greatest benefit. What makes this an especially nice paper is that the authors bring in other data sources to help explain their findings. Panel survey data are used to demonstrate that non-smokers are likely to be the group benefitting most from smoking bans and that people working in public places and people with less education are most exposed to environmental tobacco smoke. These findings might not be generalisable to other settings. Other countries implemented more gradual policy changes and Switzerland had a particularly high baseline smoking rate. But the findings suggest that smoking bans are associated with population health benefits (and the associated cost savings) and could also help tackle health inequalities.

Credits

Chris Sampson’s journal round-up for 14th May 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

A practical guide to conducting a systematic review and meta-analysis of health state utility values. PharmacoEconomics [PubMed] Published 10th May 2018

I love articles that outline the practical application of a particular method to solve a particular problem, especially when the article shares analysis code that can be copied and adapted. This paper does just that for the case of synthesising health state utility values. Decision modellers use utility values as parameters. Most of the time these are drawn from a single source which almost certainly introduces some kind of bias to the resulting cost-effectiveness estimates. So it’s better to combine all of the relevant available information. But that’s easier said than done, as numerous researchers (myself included) have discovered. This paper outlines the various approaches and some of the merits and limitations of each. There are some standard stages, for which advice is provided, relating to the identification, selection, and extraction of data. Those are by no means simple tasks, but the really tricky bit comes when you try and pool the utility values that you’ve found. The authors outline three strategies: i) fixed effect meta-analysis, ii) random effects meta-analysis, and iii) mixed effects meta-regression. Each is illustrated with a hypothetical example, with Stata and R commands provided. Broadly speaking, the authors favour mixed effects meta-regression because of its ability to identify the extent of similarity between sources and to help explain heterogeneity. The authors insist that comparability between sources is a precondition for pooling. But the thing about health state utility values is that they are – almost by definition – never comparable. Different population? Not comparable. Different treatment pathway? No chance. Different utility measure? Ha! They may or may not appear to be similar statistically, but that’s totally irrelevant. What matters is whether the decision-maker ‘believes’ the values. If they believe them then they should be included and pooled. If decision-makers have reason to believe one source more or less than another then this should be accounted for in the weighting. If they don’t believe them at all then they should be excluded. Comparability is framed as a statistical question, when in reality it is a conceptual one. For now, researchers will have to tackle that themselves. This paper doesn’t solve all of the problems around meta-analysis of health state utility values, but it does a good job of outlining methodological developments to date and provides recommendations in accordance with them.

Unemployment, unemployment duration, and health: selection or causation? The European Journal of Health Economics [PubMed] Published 3rd May 2018

One of the major socioeconomic correlates of poor health is unemployment. It appears not to be very good for you. But there’s an obvious challenge here – does unemployment cause ill-health, or are unhealthy people just more likely to be unemployed? Both, probably, but that answer doesn’t make for clear policy solutions. This paper – following a large body of literature – attempts to explain what’s going on. Its novelty comes in the way the author considers timing and distinguishes between mental and physical health. The basis for the analysis is that selection into unemployment by the unhealthy ought to imply time-constant effects of unemployment on health. On the other hand, the negative effect of unemployment on health ought to grow over time. Using seven waves of data from the German Socio-economic Panel, a sample of 17,000 people (chopped from 48,000) is analysed, of which around 3,000 experienced unemployment. The basis for measuring mental and physical health is summary scores from the SF-12. A fixed-effects model is constructed based on the dependence of health on the duration and timing of unemployment, rather than just the occurrence of unemployment per se. The author finds a cumulative effect of unemployment on physical ill-health over time, implying causation. This is particularly pronounced for people unemployed in later life, and there was essentially no impact on physical health for younger people. The longer people spent unemployed, the more their health deteriorated. This was accompanied by a strong long-term selection effect of less physically healthy people being more likely to become unemployed. In contrast, for mental health, the findings suggest a short-term selection effect of people who experience a decline in mental health being more likely to become unemployed. But then, following unemployment, mental health declines further, so the balance of selection and causation effects is less clear. In contrast to physical health, people’s mental health is more badly affected by unemployment at younger ages. By no means does this study prove the balance between selection and causality. It can’t account for people’s anticipation of unemployment or future ill-health. But it does provide inspiration for better-targeted policies to limit the impact of unemployment on health.

Different domains – different time preferences? Social Science & Medicine [PubMed] Published 30th April 2018

Economists are often criticised by non-economists. Usually, the criticisms are unfounded, but one of the ways in which I think some (micro)economists can have tunnel vision is in thinking that preferences elicited with respect to money exhibit the same characteristics as preferences about things other than money. My instinct tells me that – for most people – that isn’t true. This study looks at one of those characteristics of preferences – namely, time preferences. Unfortunately for me, it suggests that my instincts aren’t correct. The authors outline a quasi-hyperbolic discounting model, incorporating both short-term present bias and long-term impatience, to explain gym members’ time preferences in the health and monetary domains. A survey was conducted with members of a chain of fitness centres in Denmark, of which 1,687 responded. Half were allocated to money-related questions and half to health-related questions. Respondents were asked to match an amount of future gains with an amount of immediate gains to provide a point of indifference. Health problems were formulated as back pain, with an EQ-5D-3L level 2 for usual activities and a level 2 for pain or discomfort. The findings were that estimates for discount rates and present bias in the two domains are different, but not by very much. On average, discount rates are slightly higher in the health domain – a finding driven by female respondents and people with more education. Present bias is the same – on average – in each domain, though retired people are more present biased for health. The authors conclude by focussing on the similarity between health and monetary time preferences, suggesting that time preferences in the monetary domain can safely be applied in the health domain. But I’d still be wary of this. For starters, one would expect a group of gym members – who have all decided to join the gym – to be relatively homogenous in their time preferences. Findings are similar on average, and there are only small differences in subgroups, but when it comes to health care (even public health) we’re never dealing with average people. Targeted interventions are increasingly needed, which means that differential discount rates in the health domain – of the kind identified in this study – should be brought into focus.

Credits

 

Thesis Thursday: Matthew Quaife

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Matthew Quaife who has a PhD from the London School of Hygiene and Tropical Medicine. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Title
Using stated preferences to estimate the impact and cost-effectiveness of new HIV prevention products in South Africa
Supervisors
Fern Terris-Prestholt, Peter Vickerman
Repository link
http://researchonline.lshtm.ac.uk/4646708

Stated preferences for what?

Our main study looked at preferences for new HIV prevention products in South Africa – estimating the uptake and cost-effectiveness of multi-purpose prevention products, which protect against HIV, pregnancy and STIs. You’ll notice that condoms do this, so why even bother? Condom use needs both partners to agree (for the duration of a given activity) and, whilst female partners tend to prefer condom-protected sex, there is lots of evidence that male partners – who also have greater bargaining power in many contexts – do not.

Oral pre-exposure prophylaxis (PrEP), microbicide gels, and vaginal rings are new products which prevent HIV infection. More importantly, they are female-initiated and can generally be used without a male partner’s knowledge. But trials and demonstration projects among women at high risk of HIV in sub-Saharan Africa have shown low levels of uptake and adherence. We used a DCE to inform the development of attractive and usable profiles for these products, and also estimate how much additional demand – and therefore protection – would be gained from adding contraceptive or STI-protective attributes.

We also elicited the stated preferences of female sex workers for client risk, condom use, and payments for sex. Sex workers can earn more for risky unprotected sex, and we used a repeated DCE to predict risk compensation (i.e. how much condom use would change) if they were to use HIV prevention products.

What did you find most influenced people’s preferences in your research?

Unsurprisingly for products, HIV protection was most important to people, followed by STI and then pregnancy protection. But digging below these averages with a latent class analysis, we found some interesting variation within female respondents: over a third were not concerned with HIV protection at all, instead strongly caring about pregnancy and STI protection. Worryingly, these were more likely to be respondents from high-incidence adolescent and sex worker groups. The remainder of the sample overwhelmingly chose based on HIV protection.

In the second sex worker DCE, we found that using a new HIV prevention product made condoms become less important and price more important. We predict that the price premium for unprotected sex would reduce by two thirds, and the amount of condomless sex would double. This is an interesting labour market/economic finding, but – if true – also has real public health implications. Since economic changes mean sex workers move from multi-purpose condoms to single-purpose products which need high levels of adherence, we thought this would be interesting to model.

How did you use information about people’s preferences to inform estimates of cost-effectiveness?

In two ways. First, we used simple uptake predictions from DCEs to parameterise an HIV transmission model, allowing for condom substitution uptake to vary by condom users and non-users (it was double in the latter). We were also able to model the potential uptake of multipurpose products which don’t exist yet – e.g. a pill protecting from HIV and pregnancy. We predict that this combination, in particular, would double uptake among high-risk young women.

Second, we predicted risk compensation among sex workers who chose new products instead of condoms. We were also able to calculate the price elasticity of supply of unprotected sex, which we built into a dynamic transmission model as a determinant of behaviour.

Can discrete choice experiments accurately predict the kinds of behaviours that you were looking at?

To be honest, when I started the PhD I was really sceptical – and I still am to an extent. But two things make me think DCEs can be useful in predicting behaviours.

First is the data. We published a meta-analysis of how well DCEs predict real-world health choices at an individual level. We only found six studies with individual-level data, but these showed DCEs predict with an 88% sensitivity but just a 34% specificity. If a DCE says you’ll do something, you more than likely will – which is important for modelling heterogeneity in uptake. We desperately need more studies following up DCE participants making real-world choices.

Second is the lack of alternative inputs. Where products are new and potential users are inexperienced, modellers pick an uptake number/range and hope for the best. Where we don’t know efficacy, we may assume that uptake and efficacy are linearly related – but they may not be (e.g. if proportionately more people use a 95% effective product than a 45% effective one). Instead, we might assume uptake and efficacy are independent, but that might sound even less realistic. I think that DCEs can tell us something about these behaviours that are useful for the parameters and structures of models, even if they are not perfect predictors.

Your tread the waters of infectious disease modelling in your research – was the incorporation of economic factors a challenge?

It was pretty tricky, though not as challenging as building the simple dynamic transmission model as a first exposure to R. In general, behaviours are pretty crudely modelled in transmission models, largely due to assumptions like random mixing and other population-level dynamics. We made a simple mechanistic model of sex work based on the supply elasticities estimated in the DCE, and ran a few scenarios, each time estimating the impact of prevention products. We simulated the price of unprotected sex falling and quantity rising as above, but also overlaid a few behavioural rules (e.g. Camerer’s constant income hypothesis) to simulate behavioural responses to a fall in overall income. Finally, we thought about competition between product users and non-users, and how much the latter may be affected by the market behaviours of the former. Look out for the paper at Bristol HESG!

How would you like to see research build on your work to improve HIV prevention?

I did a public engagement event last year based on one statistic: if you are a 16-year old girl living in Durban, you have an 80% lifetime risk of acquiring HIV. I find it unbelievable that, in 2018, when millions have been spent on HIV prevention and we have a range of interventions that can prevent HIV, incidence among some groups is still so dramatically and persistently high.

I think research has a really important role in understanding how people want to protect themselves from HIV, STIs, and pregnancy. In addition to highlighting the populations where interventions will be most cost-effective, we show that variation in preferences drives impact. I hope we can keep banging the drum to make attractive and effective options available to those at high risk.