Alastair Canaway’s journal round-up for 29th January 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Is “end of life” a special case? Connecting Q with survey methods to measure societal support for views on the value of life-extending treatments. Health Economics [PubMed] Published 19th January 2018

Should end-of-life care be treated differently? A question often asked and previously discussed on this blog: findings to date are equivocal. This question is important given NICE’s End-of-Life Guidance for increased QALY thresholds for life-extending interventions, and additionally the Cancer Drugs Fund (CDF). This week’s round-up sees Helen Mason and colleagues attempt to inform the debate around societal support for views of end-of-life care, by trying to determine the degree of support for different views on the value of life-extending treatment. It’s always a treat to see papers grounded in qualitative research in the big health economics journals and this month saw the use of a particularly novel mixed methods approach adding a quantitative element to their previous qualitative findings. They combined the novel (but increasingly recognisable thanks to the Glasgow team) Q methodology with survey techniques to examine the relative strength of views on end-of-life care that they had formulated in a previous Q methodology study. Their previous research had found that there are three prevalent viewpoints on the value of life-extending treatment: 1. ‘a population perspective: value for money, no special cases’, 2. ‘life is precious: valuing life-extension and patient choice’, 3. ‘valuing wider benefits and opportunity cost: the quality of life and death’. This paper used a large Q-based survey design (n=4902) to identify societal support for the three different viewpoints. Viewpoints 1 and 2 were found to be dominant, whilst there was little support for viewpoint 3. The two supported viewpoints are not complimentary: they represent the ethical divide between the utilitarian with a fixed budget (view 1), and the perspective based on entitlement to healthcare (view 2: which implies an expanding healthcare budget in practice). I suspect most health economists will fall into camp number one. In terms of informing decision making, this is very helpful, yet unhelpful: there is no clear answer. It is, however, useful for decision makers in providing evidence to balance the oft-repeated ‘end of life is special’ argument based solely on conjecture, and not evidence (disclosure: I have almost certainly made this argument before). Neither of the dominant viewpoints supports NICE’s End of Life Guidance nor the CDF. Viewpoint 1 suggests end of life interventions should be treated the same as others, whilst viewpoint 2 suggests that treatments should be provided if the patient chooses them; it does not make end of life a special case as this viewpoint believes all treatments should be available if people wish to have them (and we should expand budgets accordingly). Should end of life care be treated differently? Well, it depends on who you ask.

A systematic review and meta-analysis of childhood health utilities. Medical Decision Making [PubMed] Published 7th October 2017

If you’re working on an economic evaluation of an intervention targeting children then you are going to be thankful for this paper. The purpose of the paper was to create a compendium of utility values for childhood conditions. A systematic review was conducted which identified a whopping 26,634 papers after deduplication – sincere sympathy to those who had to do the abstract screening. Following abstract screening, data were extracted for the remaining 272 papers. In total, 3,414 utility values were included when all subgroups were considered – this covered all ICD-10 chapters relevant to child health. When considering only the ‘main study’ samples, 1,191 utility values were recorded and these are helpfully separated by health condition, and methodological characteristics. In short, the authors have successfully built a vast catalogue of child utility values (and distributions) for use in future economic evaluations. They didn’t, however, stop there, they then built on the systematic review results by conducting a meta-analysis to i) estimate health utility decrements for each condition category compared to general population health, and ii) to examine how methodological factors impact child utility values. Interestingly for those conducting research in children, they found that parental proxy values were associated with an overestimation of values. There is a lot to unpack in this paper and a lot of appendices and supplementary materials are included (including the excel database for all 3,414 subsamples of health utilities). I’m sure this will be a valuable resource in future for health economic researchers working in the childhood context. As far as MSc dissertation projects go, this is a very impressive contribution.

Estimating a cost-effectiveness threshold for the Spanish NHS. Health Economics [PubMed] [RePEc] Published 28th December 2017

In the UK, the cost-per-QALY threshold is long-established, although whether it is the ‘correct’ value is fiercely debated. Likewise in Spain, there is a commonly cited threshold value of €30,000 per QALY with a dearth of empirical justification. This paper sought to identify a cost-per-QALY threshold for the Spanish National Health Service (SNHS) by estimating the marginal cost per QALY at which the SNHS currently operates on average. This was achieved by exploiting data on 17 regional health services between the years 2008-2012 when the health budget experienced considerable cuts due to the global economic crisis. This paper uses econometric models based on the provoking work by Claxton et al in the UK (see the full paper if you’re interested in the model specification) to achieve this. Variations between Spanish regions over time allowed the authors to estimate the impact of health spending on outcomes (measured as quality-adjusted life expectancy); this was then translated into a cost-per-QALY value for the SNHS. The headline figures derived from the analysis give a threshold between €22,000 and €25,000 per QALY. This is substantially below the commonly cited threshold of €30,000 per QALY. There are, however (as to be expected) various limitations acknowledged by the authors, which means we should not take this threshold as set in stone. However, unlike the status quo, there is empirical evidence backing this threshold and it should stimulate further research and discussion about whether such a change should be implemented.


Thesis Thursday: Koonal Shah

On the third Thursday of every month, we speak to a recent graduate about their thesis and their studies. This month’s guest is Dr Koonal Shah who has a PhD from the University of Sheffield. If you would like to suggest a candidate for an upcoming Thesis Thursday, get in touch.

Valuing health at the end of life
Aki Tsuchiya, Allan Wailoo
Repository link

What were the key questions you wanted to answer with your research?

My key research question was: Do members of the general public wish to place greater weight on a unit of health gain for end of life patients than on that for other types of patients? Or put more concisely: Is there evidence of public support for an end of life premium?

The research question was motivated by a policy introduced by NICE in 2009 [PDF], which effectively gives special weighting to health gains generated by life-extending end of life treatments. This represents an explicit departure from the Institute’s reference case position that all equal-sized health gains are of equal social value (the ‘a QALY is a QALY’ rule). NICE’s policy was justified in part by claims that it represented the preferences of society, but little evidence was available to either support or refute that premise. It was this gap in the evidence that inspired my research question.

I also sought to answer other questions, such as whether the focus on life extensions (rather than quality of life improvements) in NICE’s policy is consistent with public preferences, and whether people’s stated end of life-related preferences depend on the ways in which the preference elicitation tasks are designed, framed and presented.

Which methodologies did you use to elicit people’s preferences?

All four of my empirical studies used hypothetical choice exercises to elicit preferences from samples of the UK general public. NICE’s policy was used as the framework for the designs in each case. Three of the studies can be described as having used simple choice tasks, while one study specifically applied the discrete choice experiment methodology. The general approach was to ask survey respondents which of two hypothetical patients they thought should be treated, assuming that the health service had only enough funds to treat one of them.

In my final study, which focused on framing effects and study design considerations, I included attitudinal questions with Likert item responses alongside the hypothetical choice tasks. The rationale for including these questions was to examine the consistency of respondents’ views across two different approaches (spoiler: most people are not very consistent).

Your study included face-to-face interviews. Did these provide you with information that you weren’t able to obtain from a more general survey?

The surveys in my first two empirical studies were both administered via face-to-face interviews. In the first study, I conducted the interviews myself, while in the second study the interviews were subcontracted to a market research agency. I also conducted a small number of face-to-face interviews when pilot testing early versions of the surveys for my third and fourth studies. The piloting process was useful as it provided me with first-hand information about which aspects of the surveys did and did not work well when administered in practice. It also gave me a sense of how appropriate my questions were. The subject matter – prioritising between patients described as having terminal illnesses and poor prognoses – had the potential to be distressing for some people. My view was that I shouldn’t be including questions that I did not feel comfortable asking strangers in an interview setting.

The use of face-to-face interviews was particularly valuable in my first study as it allowed me to ask debrief questions designed to probe respondents and elicit qualitative information about the thinking behind their responses.

What factors influence people’s preferences for allocating health care resources at the end of life?

My research suggests that people’s preferences regarding the value of end of life treatments can depend on whether the treatment is life-extending or quality of life-improving. This is noteworthy because NICE’s end of life criteria accommodate life extensions but not quality of life improvements.

I also found that the amount of time that end of life patients have to ‘prepare for death’ was a consideration for a number of respondents. Some of my results suggest that observed preferences for prioritising the treatment of end of life patients may be driven by concern about how long the patients have known their prognosis rather than by concern about how long they have left to live, per se.

The wider literature suggests that the age of the end of life patients (which may act as a proxy for their role in their household or in society) may also matter. Some studies have reported evidence that respondents become less concerned about the number of remaining life years when the patients in question are relatively old. This is consistent with the ‘fair innings’ argument proposed by Alan Williams.

Given the findings of your study, are there any circumstances under which you would support an end of life premium?

My findings offer limited support for an end of life premium (though it should be noted that the wider literature is more equivocal). So it might be considered appropriate for NICE to abandon its end of life policy on the grounds that the population health losses that arise due to the policy are not justified by the evidence on societal preferences. However, there may be arguments for retaining some form of end of life weighting irrespective of societal preferences. For example, if the standard QALY approach systematically underestimates the benefits of end of life treatments, it may be appropriate to correct for this (though whether this is actually the case would itself need investigating).

Many studies reporting that people wish to prioritise the treatment of the severely ill have described severity in terms of quality of life rather than life expectancy. And some of my results suggest that support for an end of life premium would be stronger if it applied to quality of life-improving treatments. This suggests that weighting QALYs in accordance with continuous variables capturing quality of life as well as life expectancy may be more consistent with public preferences than the current practice of applying binary cut-offs based only on life expectancy information, and would address some of the criticisms of the arbitrariness of NICE’s policy.

Chris Sampson’s journal round-up for 9th October 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Evaluating the relationship between visual acuity and utilities in patients with diabetic macular edema enrolled in intravitreal aflibercept studies. Investigative Ophthalmology & Visual Science [PubMed] Published October 2017

Part of my day job involves the evaluation of a new type of screening programme for diabetic eye disease, including the use of a decision analytic model. Cost-effectiveness models usually need health state utility values for parameters in order to estimate QALYs. There are some interesting challenges in evaluating health-related quality of life in the context of vision loss; does vision in the best eye or worst eye affect quality of life most; do different eye diseases have different impacts independent of sight loss; do generic preference-based measures even work in this context? This study explores some of these questions. It combines baseline and follow-up EQ-5D and VFQ-UI (a condition-specific preference-based measure) responses from 1,320 patients from 4 different studies, along with visual acuity data. OLS and random effects panel models are used to predict utility values dependent on visual acuity and other individual characteristics. Best-seeing eye seems to be a more important determinant than worst-seeing eye, which supports previous studies. But worst-seeing eye is still important, with about a third of the impact of best-seeing eye. So economic evaluations shouldn’t ignore the bilateral nature of eye disease. Visual acuity – in both best- and worst-seeing eye – was more strongly associated with the condition-specific VFQ-UI than with the EQ-5D index, leading to better predictive power, which is not a big surprise. One way to look at this is that the EQ-5D underestimates the impact of visual acuity on utility. An alternative view could be that the VFQ-UI valuation process overestimates the impact of visual acuity on utility. This study is a nice demonstration of the fact that selecting health state utility values for a model-based economic evaluation is not straightforward. Attention needs to be given to the choice of measure (e.g. generic or condition-specific), but also to the way states are defined to allow for accurate utility values to be attached.

Do capability and functioning differ? A study of U.K. survey responses. Health Economics [PubMed] Published 24th September 2017

I like the capability approach in theory, but not in practice. I’ve written before about some of my concerns. One of them is that we don’t know whether capability measures (such as the ICECAP) offer anything beyond semantic nuance. This study sought to address that. A ‘functioning and capability’ instrument was devised, which reworded the ICECAP-A by changing phrases like “I am able to be” to phrases like “I am”, so that each question could have a ‘functioning’ version as well as a ‘capability’ version. Then, both the functioning and capability versions of the domains were presented in tandem. Questionnaires were sent to 1,627 individuals who had participated in another study about spillover effects in meningitis. Respondents (n=1,022) were family members of people experiencing after-effects of meningitis. The analysis focusses on the instances where capabilities and functionings diverge. Across the sample, 34% of respondents reported a difference between capability and functioning on at least one domain. For all domain-level responses, 12% were associated with higher capability than functioning, while 2% reported higher functioning. Some differences were observed between different groups of people. Older people tended to be less likely to report excess capabilities, while those with degree-level education reported greater capabilities. Informal care providers had lower functionings and capabilities but were more likely to report a difference between the two. Women were more likely to report excess capabilities in the ‘attachment’ domain. These differences lead the author to conclude that the wording of the ICECAP measure enables researchers to capture something beyond functioning, and that the choice of a capability measure could lead to different resource allocation decisions. I’m not convinced. The study makes an error that is common in this field; it presupposes that the changes in wording successfully distinguish between capabilities and functionings. This is implemented analytically by dropping from the primary analysis the cases where capabilities exceeded functionings, which are presumed to be illogical. If we don’t accept this presupposition (and we shouldn’t) then the meaning of the findings becomes questionable. The paper does outline most of the limitations of the study, but it doesn’t dedicate much space to alternative explanations. One is to do with the distinction between ‘can’ and ‘could’. If people answer ‘capability’ questions with reference to future possibilities, then the difference could simply be driven by optimism about future functionings. This future-reference problem is most obvious in the ‘achievement and progress’ domain, which incidentally, in this study, was the domain with the greatest probability of showing a discrepancy between capabilities and functionings. Another alternative explanation is that showing someone two slightly different questions coaxes them into making an artificial distinction that they wouldn’t otherwise make. In my previous writing on this, I suggested that two things needed to be identified. The first was to see whether people give different responses with the different wording. This study goes some way towards that, which is a good start. The second was to see whether people value states defined in these ways any differently. Until we have answers to both these questions I will remain sceptical about the implications of the ICECAP’s semantic nuance.

Estimating a constant WTP for a QALY—a mission impossible? The European Journal of Health Economics [PubMed] Published 21st September 2017

The idea of estimating willingness to pay (WTP) for a QALY has fallen out of fashion. It’s a nice idea in principle but, as the title of this paper suggests, it’s not easy to come up with a meaningful answer. One key problem has been that WTP for a QALY is not constant in the number of QALYs being gained – that is, people are willing to pay less (at the margin) for greater QALY gains. But maybe that’s OK. NICE and their counterparts tend not to use a fixed threshold but rather a range: £20,000-£30,000 per QALY, say. So maybe the variability in WTP for a QALY can be reflected in this range. This study explores some of the reasons – including uncertainty – for differences in elicited WTP values for a QALY. A contingent valuation exercise was conducted using a 2014 Internet panel survey of 1,400 Swedish citizens. The survey consisted 21 questions about respondents’ own health, sociodemographics, prioritisation attitudes, WTP for health improvements, and a societal decision-making task. Respondents were randomly assigned to one of five scenarios with different magnitudes and probabilities of health gain, with yes/no responses for five different WTP ‘bids’. The estimated WTP for a QALY – using the UK EQ-5D-3L tariff – was €17,000. But across the different scenarios, the WTP ranged from €10,600 to over a million. Wide confidence intervals abound. The authors’ findings only partially support an assumption of weak scope sensitivity – that more QALYs are worth paying more for – and do not at all support a strong assumption of scope sensitivity that WTP is proportional to QALY gain. This is what is known as scope bias, and this insensitivity to scope also applied to the variability in uncertainty. The authors also found that using different EQ-5D or VAS tariffs to estimate health state values resulted in variable differences in WTP estimates. Consistent relationships between individuals’ characteristics and their WTP were not found, though income and education seemed to be associated with higher willingness to pay across the sample. It isn’t clear what the implications of these findings are, except for the reinforcement of any scepticism you might have about the sociomathematical validity (yes, I’m sticking with that) of the QALY.