Jason Shafrin’s journal round-up for 9th September 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Price effects of a hospital merger: heterogeneity across health insurers, hospital products, and hospital locations. Health Economics [PubMed] [RePEc] Published 1st July 2019

Most economics literature indicates that hospital mergers typically result in higher prices. But what does higher prices mean? Does it mean higher prices for all services? Higher prices for all health insurers?

Many economic models assume that hospitals charge a standard base rate and charges for individuals’ procedures are a fixed ratio of the base across all hospitals. This approach would make sense in a DRG-based system where prices are proportional to the product of a hospital’s base rate and the Medicare Severity DRG specific weight for a given hospitalization.

In practice, however, it is possible for prices to vary across procedures, across different negotiated contracts with insurers, and even across different locations within the same hospital system. For instance, the economic theory in this paper shows that the effect of a hospital merger increases prices most when an insurer’s bargaining power is high. Why? Because if the insurer had weak bargaining power, the hospital already would have high prices; the marginal impact is only felt when insurers had market power to begin with. Another interesting theoretical prediction is that if substitution between hospitals is stronger for service A than service B, prices will increase more for the former product, since the merger decreases the ability of consumers to substitute across hospitals due to decreased supply.

In their empirical applications, the authors use a comprehensive nationwide patient‐level data set from the Netherlands, on hospital admissions and prices. The study looks at three separate services: hip replacement, knee replacement, and cataract surgery. They use a difference-in-difference approach to measure the impact of a merger on prices for different services and across payers.

Although the authors did replicate earlier findings and showed that prices generally rise after a merger, the authors found significant heterogeneity. For instance, prices rose for hip replacements but not for knee replacements or cataracts. Prices rose for four health insurers but not for a fifth. In short, while previous findings about average prices still hold, in the real world, the price impact is much more heterogeneous than previous models would predict.

The challenges of universal health insurance in developing countries: evidence from a large-scale randomized experiment in Indonesia. NBER Working Paper [RePEc] Published August 2019

In 2014, the Indonesian government launched Jaminan Kesehatan Nasional (JKN), a national, contributory health insurance program that aimed to provide universal health coverage by 2019. The program requires individuals to pay premiums for coverage but there is an insurance mandate. JKN, however, faced two key challenges: low enrollment and high cost. Only 20% of eligible individuals enrolled. Further, the claims paid exceeded premiums received by a factor of more than 6 to 1.

This working paper by Banerjee et al describes a large-scale, multi-arm experiment to examine three interventions to potentially address these issues. The interventions included: (i) premium subsidy, (ii) transaction cost reduction, and (iii) information dissemination. For the first intervention, individuals received either 50% or 100% premium subsidy if they signed up within a limited time frame. For the second intervention, households received at-home assistance to enroll in plans through the online registration system (rather than traveling to a distant insurance office to enroll). For the third intervention, the authors randomized some individuals to receive various informational items. The real benefit of this study is that people were randomized to these different interventions.

Using this study design, the authors found that premium assistance did increase enrollment. Further, premium assistance did not affect per person costs since the individuals who enrolled were healthier on average. Thus, the fear that subsidies would increase adverse selection was unfounded. The authors also found that offering help in registering for insurance increased enrollment. Thus, it appears that the ‘hassle cost’ of signing up for a government program represents a real hassle with tangible implications. However, the additional insurance information provided had no effect on enrollment.

These results are both encouraging and discouraging. Premium subsidies work and do not drive up cost per person. However, enrollment levels – even with a 100% premium subsidy and assistance registering for insurance – were only at 30%. This figure is far better than the baseline figure of 8%, but far from the ‘universal’ coverage envisioned by the creators of JKN.

Credits

Method of the month: constrained randomisation

Once a month we discuss a particular research method that may be of interest to people working in health economics. We’ll consider widely used key methodologies, as well as more novel approaches. Our reviews are not designed to be comprehensive but provide an introduction to the method, its underlying principles, some applied examples, and where to find out more. If you’d like to write a post for this series, get in touch. This month’s method is constrained randomisation.

Principle

Randomised experimental studies are one of the best ways of estimating the causal effects of an intervention. They have become more and more widely used in economics; Banerjee and Duflo are often credited with popularising them among economists. When done well, randomly assigning a treatment ensures both observable and unobservable factors are independent of treatment status and likely to be balanced between treatment and control units.

Many of the interventions economists are interested in are at a ‘cluster’ level, be it a school, hospital, village, or otherwise. So the appropriate experimental design would be a cluster randomised controlled trial (cRCT), in which the clusters are randomised to treatment or control and individuals within each cluster are observed either cross-sectionally or longitudinally. But, except in cases of large budgets, the number of clusters participating can be fairly small. When randomising a relatively small number of clusters we could by chance end up with a quite severe imbalance in key covariates between trial arms. This presents a problem if we suspect a priori that these covariates have an influence on key outcomes.

One solution to the problem of potential imbalance is covariate-based constrained randomisation. The principle here is to conduct a large number of randomisations, assess the balance of covariates in each one using some balance metric, and then to randomly choose one of the most balanced according to this metric. This method preserves the important random treatment assignment while ensuring covariate balance. Stratified randomisation also has a similar goal, but in many cases may not be possible if there are continuous covariates of interest or too few clusters to distribute among many strata.

Implementation

Conducting covariate constrained randomisation is straightforward and involves the following steps:

  1. Specifying the important baseline covariates to balance the clusters on. For each cluster j we have L covariates x_{il}; l=1,...L.
  2. Characterising each cluster in terms of these covariates, i.e. creating the x_{il}.
  3. Enumerating all potential randomisation schemes or simulating a large number of them. For each one, we will need to measure the balance of the x_{il} between trial arms.
  4. Selecting a candidate set of randomisation schemes that are sufficiently balanced according to some pre-specified criterion from which we can randomly choose our treatment allocation.

Balance scores

A key ingredient in the above steps is the balance score. This score needs to be some univariate measure of potentially multivariate imbalance between two (or more) groups. A commonly used score is that proposed by Raab and Butcher:

\sum_{l=1}^{L} \omega_l (\bar{x}_{1l}-\bar{x}_{0l})^2

where \bar{x}_{1l} and \bar{x}_{0l} are the mean values of covariate l in the treatment and control groups respectively, and \omega_l is some weight, which is often the inverse standard deviation of the covariate. Conceptually the score is a sum of standardised differences in means, so lower values indicate greater balance. But other scores would also work. Indeed, any statistic that measures the distance between the distributions of two variables would work and could be summed up over the covariates. This could include the maximum distance:

max_l |x_{1l} - x_{0l}|

the Manhattan distance:

\sum_{l=1}^{L} |x_{1l}-x_{0l}|

or even the Symmetrised Bayesian Kullback-Leibler divergence (I can’t be bothered to type this one out). Grischott has developed a Shiny application to estimate all these distances in a constrained randomisation framework, detailed in this paper.

Things become more complex if there are more than two trial arms. All of the above scores are only able to compare two groups. However, there already exist a number of univariate measures of multivariate balance in the form of MANOVA (multivariate analysis of variance) test statistics. For example, if we have G trial arms and let X_{jg} = \left[ x_{jg1},...,x_{jgL} \right]' then the between group covariance matrix is:

B = \sum_{g=1}^G N_g(\bar{X}_{.g} - \bar{X}_{..})(\bar{X}_{.g} - \bar{X}_{..})'

and the within group covariance matrix is:

W = \sum_{g=1}^G \sum_{j=1}^{N_g} (X_{jg}-\bar{X}_{.g})(X_{jg}-\bar{X}_{.g})'

which we can use in a variety of statistics including Wilks’ Lambda, for example:

\Lambda = \frac{det(W)}{det(W+B)}

No trial has previously used covariate constrained randomisation with multiple groups, as far as I am aware, but this is the subject of an ongoing paper investigating these scores – so watch this space!

Once the scores have been calculated for all possible schemes or a very large number of possible schemes, we select from among those which are most balanced. The most balanced are defined according to some quantile of the balance score, say the top 15%.

As a simple simulated example of how this might be coded in R, let’s consider a trial of 8 clusters with two standard-normally distributed covariates. We’ll use the Raab and Butcher score from above:

#simulate the covariates
n <- 8
x1 <- rnorm(n)
x2 <- rnorm(n)
x <- matrix(c(x1,x2),ncol=2)
#enumerate all possible schemes - you'll need the partitions package here
schemes <- partitions::setparts(c(n/2,n/2))
#write a function that will estimate the score
#for each scheme which we can apply over our
#set of schemes
balance_score <- function(scheme,covs){
treat.idx <- I(scheme==2)
control.idx <- I(scheme==1)
treat.means <- apply(covs[treat.idx,],2,mean)
control.means <- apply(covs[control.idx,],2,mean)
cov.sds <- apply(covs,2,sd)
#Raab-butcher score
score <- sum((treat.means - control.means)^2/cov.sds)
return(score)
}
#apply the function
scores <- apply(schemes,2,function(i)balance_score(i,x))
#find top 15% of schemes (lowest scores)
scheme.set <- which(scores <= quantile(scores,0.15))
#choose one at random
scheme.number <- sample(scheme.set,1)
scheme.chosen <- schemes[,scheme.number]

Analyses

A commonly used method of cluster trial analysis is by estimating a mixed-model, i.e. a hierarchical model with cluster-level random effects. Two key questions are whether to control for the covariates used in the randomisation, and which test to use for treatment effects. Fan Li has two great papers answering these questions for linear models and binomial models. One key conclusion is that the appropriate type I error rates are only achieved in models adjusted for the covariates used in the randomisation. For non-linear models type I error rates can be way off for many estimators especially with small numbers of clusters, which is often the reason for doing constrained randomisation in the first place, so a careful choice is needed here. I would recommend adjusted permutation tests if in doubt to ensure the appropriate type I error rates. Of course, one could take a Bayesian approach to analysis, although there is no analysis that I’m aware of, of the performance of these models for these analyses (another case of “watch this space!”).

Application

There are many trials that used this procedure and listing even a fraction would be a daunting task. But I would be remiss for not noting a trial of my own that uses covariate constrained randomisation. It is investigating the effect of providing an incentive to small and medium sized enterprises to adhere to a workplace well-being programme. There are good applications used as examples in Fan Li’s papers mentioned above. A trial that featured in a journal round-up in February used covariate constrained randomisation to balance a very small number of clusters in a trial of a medicines access programme in Kenya.

Credit

Sam Watson’s journal round-up for 25th February 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Democracy does cause growth. Journal of Political Economy [RePEc] Published January 2019

Citizens of a country with a democratic system of government are able to affect change in its governors and influence policy. This threat of voting out the poorly performing from power provides an incentive for the government to legislate in a way that benefits the population. However, democracy is certainly no guarantee of good governance, economic growth, or population health as many events in the last ten years will testify. Similarly, non-democracies can also enact policy that benefits the people. A benevolent dictator is not faced with the same need to satisfy voters and can enact politically challenging but beneficial policies. People often point to China as a key example of this. So there remains the question as to whether democracy per se has any tangible economic or health benefits.

In a past discussion of an article on democratic reform and child health, I concluded that “Democratic reform is neither a sufficient nor necessary condition for improvements in child mortality.” Nevertheless democracy may still be beneficial, on average, given the in-built safeguards against poor leaders. This paper, which has been doing the rounds for years as a working paper, is another examination of the question of the impact of becoming democratic. Principally the article is focused on economic growth, but health and education outcomes feature (very) briefly. The concern I have with the article mentioned at the beginning of this paragraph and with this newly published article are that they do not consider in great detail why democratisation occurred. As much political science work points out, democratic reform can be demanded in poor economic conditions due to poor governance. For these endogenous changes economic growth causes democracy. Whereas in other countries democracy could come about in a more exogenous manner. Lumping them all in together may be misleading.

While the authors of this paper provide pages after pages of different regression specifications, including auto-regressive models and instrumental variables models, I remain unconvinced. For example, the instrument relies on ‘waves’ of transitions: a country is more likely to shift politically if its regional neighbours do, like the Arab Spring. But neither economic nor political conditions in a given country are independent of its neighbours. In somewhat of a rebuttal, Ruiz Pozuelo and other authors conducted a survey to try to identify and separate out those countries which transitioned to democracy endogenously and exogenously (from economic conditions). Their work suggests that the countries that transitioned exogenously did not experience growth benefits. Taken together this shows the importance of theory to guide empirical work, and not the other way round.

Effect of Novartis Access on availability and price of non-communicable disease medicines in Kenya: a cluster-randomised controlled trial. Lancet: Global Health Published February 2019

Access to medicines is one of the key barriers to achieving universal health care. The cost-effectiveness threshold for many low income countries rules out many potentially beneficial medicines. This is in part driven though by the high prices charged by pharmaceutical countries to purchase medicine, which often do not discriminate between purchasers with high and low abilities to pay. Novartis launched a scheme – Novartis Access – to provide access to medicines to low and middle income countries at a price of US$1 per treatment per month. This article presents a cluster randomised trial of this scheme in eight counties of Kenya.

The trial provided access to four treatment counties and used four counties as controls. Individuals selected at random within the counties with non-communicable diseases and pharmacies were the principal units within the counties at which outcomes were analysed. Given the small number of clusters, a covariate-constrained randomisation procedure was used, which generates randomisation that ensures a decent balance of covariates between arms. However, the analysis does not control for the covariates used in the constrained randomisation, which can lead to lower power and incorrect type one error rates. This problem is emphasized by the use of statistical significance to decide on what was and was not affected by the Novartis Access program. While practically all the drugs investigated show an improved availability, only the two with p<0.05 are reported to have improved. Given the very small sample of clusters, this is a tricky distinction to make! Significance aside, the programme appears to have had some success in improving access to diabetes and asthma medication, but not quite as much as hoped. Introductory microeconomics though would show how savings are not all passed on to the consumer.

Credits