Chris Sampson’s journal round-up for 31st July 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

An exploratory study on using principal-component analysis and confirmatory factor analysis to identify bolt-on dimensions: the EQ-5D case study. Value in Health Published 14th July 2017

I’m not convinced by the idea of using bolt-on dimensions for multi-attribute utility instruments. A state description with a bolt-on refers to a different evaluative space, and therefore is not comparable with the progenitor, thus undermining its purpose. Maybe this study will persuade me otherwise. The authors analyse data from the Multi Instrument Comparison database, including responses to EQ-5D-5L, SF-6D, HUI3, AQoL 8D and 15D questionnaires, as well as the ICECAP and 3 measures of subjective well-being. Content analysis was used to allocate items from the measures to underlying constructs of health-related quality of life. The sample of 8022 was randomly split, with one half used for principal-component analysis and confirmatory factor analysis, and the other used for validation. This approach looks at the underlying constructs associated with health-related quality of life and the extent to which individual items from the questionnaires influence them. Candidate items for bolt-ons are those items from questionnaires other than the EQ-5D that are important and not otherwise captured by the EQ-5D questions. The principal-component analysis supported a 9-component model: physical functioning, psychological symptoms, satisfaction, pain, relationships, speech/cognition, hearing, energy/sleep and vision. The EQ-5D only covered physical functioning, psychological symptoms and pain. Therefore, items from measures that explain the other 6 components represent bolt-on candidates for the EQ-5D. This study succeeds in its aim. It demonstrates what appears to be a meaningful quantitative approach to identifying items not fully captured by the EQ-5D, which might be added as bolt-ons. But it doesn’t answer the question of which (if any) of these bolt-ons ought to be added, or in what circumstances. That would at least require pre-definition of the evaluative space, which might not correspond to the authors’ chosen model of health-related quality of life. If it does, then these findings would be more persuasive as a reason to do away with the EQ-5D altogether.

Endogenous information, adverse selection, and prevention: implications for genetic testing policy. Journal of Health Economics Published 13th July 2017

If you can afford it, there are all sorts of genetic tests available nowadays. Some of them could provide valuable information about the risk of particular health problems in the future. Therefore, they can be used to guide individuals’ decisions about preventive care. But if the individual’s health care is financed through insurance, that same information could prove costly. It could reinforce that classic asymmetry of information and adverse selection problem. So we need policy that deals with this. This study considers the incentives and insurance market outcomes associated with four policy options: i) mandatory disclosure of test results, ii) voluntary disclosure, iii) insurers knowing the test was taken, but not the results and iv) complete ban on the use of test information by insurers. The authors describe a utility model that incorporates the use of prevention technologies, and available insurance contracts, amongst people who are informed or uninformed (according to whether they have taken a test) and high or low risk (according to test results). This is used to estimate the value of taking a genetic test, which differs under the four different policy options. Under voluntary disclosure, the information from a genetic test always has non-negative value to the individual, who can choose to only tell their insurer if it’s favourable. The analysis shows that, in terms of social welfare, mandatory disclosure is expected to be optimal, while an information ban is dominated by all other options. These findings are in line with previous studies, which were less generalisable according to the authors. In the introduction, the authors state that “ethical issues are beyond the scope of this paper”. That’s kind of a problem. I doubt anybody who supports an information ban does so on the basis that they think it will maximise social welfare in the fashion described in this paper. More likely, they’re worried about the inequities in health that mandatory disclosure could reinforce, about which this study tells us nothing. Still, an information ban seems to be a popular policy, and studies like this indicate that such decisions should be reconsidered in light of their expected impact on social welfare.

Returns to scientific publications for pharmaceutical products in the United States. Health Economics [PubMedPublished 10th July 2017

Publication bias is a big problem. Part of the cause is that pharmaceutical companies have no incentive to publish negative findings for their own products. Though positive findings may be valuable in terms of sales. As usual, it isn’t quite that simple when you really think about it. This study looks at the effect of publications on revenue for 20 branded drugs in 3 markets – statins, rheumatoid arthritis and asthma – using an ‘event-study’ approach. The authors analyse a panel of quarterly US sales data from 2003-2013 alongside publications identified through literature searches and several drug- and market-specific covariates. Effects are estimated using first difference and difference in first difference models. The authors hypothesise that publications should have an important impact on sales in markets with high generic competition, and less in those without or with high branded competition. Essentially, this is what they find. For statins and asthma drugs, where there was some competition, clinical studies in high-impact journals increased sales to the tune of $8 million per publication. For statins, volume was not significantly affected, with mediation through price. In rhematoid arthritis, where competition is limited, the effect on sales was mediated by the effect on volume. Studies published in lower impact journals seemed to have a negative influence. Cost-effectiveness studies were only important in the market with high generic competition, increasing statin sales by $2.2 million on average. I’d imagine that these impacts are something with which firms already have a reasonable grasp. But this study provides value to public policy decision makers. It highlights those situations in which we might expect manufacturers to publish evidence and those in which it might be worthwhile increasing public investment to pick up the slack. It could also help identify where publication bias might be a bigger problem due to the incentives faced by pharmaceutical companies.

Credits

Advertisements

Chris Sampson’s journal round-up for 13th March 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

The effects of exercise and relaxation on health and wellbeing. Health Economics [PubMedPublished 9th Month 2017

Encouraging self-management of health sounds like a good idea, but the evidence is pretty weak. As economists, we know that something must be displaced in order to do it. This study considers the opportunity cost of time and how it might affect self-management activity and any associated benefits. Employment and education are likely to increase income and thus facilitate more expenditure on exercise. But the time cost of exercise is also likely to increase, meaning that the impact on demand is ambiguous. The study uses data from a trial of self-management support that included people with diabetes, COPD or IBS. EQ-5D, self-assessed health and the amount of time spent ‘being happy’ were all collected. Information was available for 12 different self-management activities, including ‘do exercises’ and ‘rest and relax’, and the extent to which individuals did these. Outcomes for 3,472 people at 12-month follow-up are estimated, controlling for outcomes at baseline and 6 months. The study assumes that employment and education affect health via their influence on exercise and relaxation. That seems a bit questionable and the other 10 self-management indicators could have been looked at to test this. People in full-time employment were 11 percentage points less likely to use relaxation to manage their condition, suggesting that the substitution effect on time dominates as the opportunity cost of self-management increases. Having a degree or professional qualification increased the probability of using exercise by 5 percentage points, suggesting that the income effect dominates. Those who are more likely to use either exercise or relaxation are also more likely to do the other. An interesting suggestion is that time preference might explain things here. Those with more education may prefer to exercise (as an investment) than to get the instant gratification of rest and relaxation. It’s important that policy recommendations take into consideration the fact that different groups will respond differently to incentives for self-management, at least partly due to their differing time constraints. The thing I find most interesting is the analysis of the different outcomes (something I’ve worked on). Exercise is found to improve self-assessed health, while relaxation increases happiness. Neither exercise or relaxation had a (statistically significant) effect on EQ-5D. Depending on your perspective, this either suggests that the EQ-5D is failing to identify important changes in broad health-related domains or it means that self-management does not achieve the goals (QALYs to the max) of the health service.

New findings from the time trade-off for income approach to elicit willingness to pay for a quality adjusted life year. The European Journal of Health Economics [PubMedPublished 8th March 2017

The question ‘what is a QALY worth’ could invoke any number of reactions in a health economist, from chin scratching to eye rolling. The perspective that we’re probably most familiar with in the UK is that the value of a QALY is the value of health foregone in order to achieve it (i.e. opportunity cost within the health care perspective). An alternative perspective is that the value of a QALY is the consumption value of health; how much consumption would individuals be willing to give up in order to obtain an additional QALY? This second perspective facilitates a broader societal perspective. It can tell us whether or not the budget is set at an appropriate level, while the health care perspective can only take the budget as given. This study relates mainly to decisions made with the ‘consumption value’ perspective. One approach that has been proposed is to assess willingness to pay for a QALY using a time trade-off exercise that incorporates trade-offs between length and quality of life and income. This study builds on the original work by using a multiplicative utility function to estimate willingness to pay and also bringing in prospect theory to allow for reference dependence and loss aversion. 550 participants were asked to choose between living 10 years in their current health state with their current salary or to live a reduced number of years in their current health state with a luxury income (pre-specified by the participant). Respondents were also asked to make a similar choice, but framed as a loss of income, between living 10 years at a subsistence income or fewer years with their current income. A quality of life trade-off exercise was also conducted, in which people traded reduced health and a lower income. The findings support the predictions of prospect theory. Loss aversion is found to be stronger for duration than for quality of life. Individuals were more willing to sacrifice life years to move from subsistence income to current income than to move from current income to luxury income. The results imply that quality of life and income are closer substitutes than longevity and income. That makes sense, given the all-or-nothing nature of being alive. Crucially, the findings highlight the need to better understand the shape of the underlying lifetime utility function. In all tasks, more than half of respondents were either non-traders or over-traded, indicating a negative willingness to pay. That should give pause for thought when it comes to any aggregation of the results. Willingness to pay studies often throw up more questions than answers. This one does so more than most, particularly about sources of bias in people’s responses. The authors identify plenty of opportunities for future research.

Beyond QALYs: multi-criteria based estimation of maximum willingness to pay for health technologies. The European Journal of Health Economics [PubMed] Published 3rd March 2017

Life is messy. Evaluating things in terms of a single outcome, whether that be QALYs, £££s or whatever, is necessarily simplifying and restrictive. That’s not necessarily a bad thing, but we’d do well to bear it in mind. In this paper, Erik Nord sets out a kind of cost value analysis that does away with QALYs (gasp!). The author starts by outlining some familiar criticisms of the QALY approach, such as its failure to consider the inherent value of life and people’s differing reference points. Generally, I see these as features rather than bugs, and it isn’t QALYs themselves in the crosshairs here so much as cost-per-QALY analysis. The proposed method flips current practice by putting societal preferences about fair and efficient resource allocation before attaching values to the outcomes. As such, it acknowledges the fact that society’s preferences for gains in quality of life differ from those for gains in length of life. For example, society may prefer treating the more severely ill (independent of age) but also exhibit a ‘fair innings’ preference that is related to age. Thus, quality and quantity of life are disaggregated and the QALY is no more. A set of tables is presented that can be read to assess ‘value’ in alternative scenarios, given the assumptions set out in the paper. There is merit in the approach and a lot that I like about the possibilities of its use. But for me, the whole thing was made less attractive by the way it is presented in the paper. The author touts willingness to pay – for quality of life gains and for longevity gains – as the basis for value. Anything that makes resource allocation more dependent on willingness to pay values for things without a price (health, life) is a big no-no for me. But the method doesn’t depend on that. Furthermore, as is so often the case, most of the criticisms within relate to ways of using QALYs, rather than the fundamental basis for their estimation. This only weakens the argument for an alternative. But I can think of plenty of problems with QALYs, some of which might be addressed by this alternative approach. It’s unfortunate that the paper doesn’t outline how these more fundamental problems might be addressed. There may come a day when we do away with QALYs, and we may end up doing something similar to what’s outlined here, but we need to think harder about how this alternative is really better.

Credits

Transformative treatments: a big methodological challenge for health economics

Social scientists, especially economists, are concerned with causal inference: understanding whether and how an event causes a certain effect. Typically, we subscribe to the view that causal relations are reducible to sets of counterfactuals, and we use ever more sophisticated methods, such as instrumental variables and propensity score matching, to estimate these counterfactuals. Under the right set of assumptions, like that unobserved differences between study subjects are time invariant or that a treatment causes its effect through a certain mechanism, we can derive estimators for average treatment effects. All uncontroversial stuff indeed.

A recent paper from L.A. Paul and Kieran Healy introduces an argument of potential importance to how we can interpret studies investigating causal relations. In particular, they make the argument that we don’t know if individual preferences persist in a study through treatment. It is in general not possible to distinguish between the case where a treatment has satisfied an underlying revealed preference, or transformed an individual’s preferences. If preferences are changed or transformed, rather than revealed, then they are, in effect, a different population and in a causal inference type study, no longer comparable to the control population.

To quote their thought experiment:

Vampires: In the 21st century, vampires begin to populate North America. Psychologists decide to study the implications this could have for the human population. They put out a call for undergraduates to participate in a randomized controlled experiment, and recruit a local vampire with scientific interests. After securing the necessary permissions, they randomize and divide their population of undergraduates into a control group and a treatment group. At t1, members of each group are given standard psychological assessments measuring their preferences about vampires in general and about becoming a vampire in particular. Then members of the experimental group are bitten by the lab vampire.

Members of both groups are left to go about their daily lives for a period of time. At t2, they are assessed. Members of the control population do not report any difference in their preferences at t2. All members of the treated population, on the other hand, report living richer lives, enjoying rewarding new sensory experiences, and having a new sense of meaning at t2. As a result, they now uniformly report very strong pro-vampire preferences. (Some members of the treatment group also expressed pro-vampire preferences before the experiment, but these were a distinct minority.) In exit interviews, all treated subjects also testify that they have no desire to return to their previous condition.

Should our psychologists conclude that being bitten by a vampire somehow satisfies people’s underlying, previously unrecognized, preferences to become vampires? No. They should conclude that being bitten by a vampire causes you to become a vampire (and thus, to prefer being one). Being bitten by a vampire and then being satisfied with the result does not satisfy or reveal your underlying preference to be a vampire. Being bitten by a vampire transforms you: it changes your preferences in a deep and fundamental way, by replacing your underlying human preferences with vampire preferences, no matter what your previous preferences were.

In our latest journal round-up, I featured a paper that used German reunification in 1989 as a natural experiment to explore the impact of novel food items in the market on consumption and weight gain. The transformative treatments argument comes into play here. Did reunification reveal the preferences of East Germans for the novel food stuffs, or did it change their preferences for foodstuffs overall due to the significant cultural change? If the latter case is true then West Germans do not constitute an appropriate control group. The causal mechanism at play is also important to the development of policy: for example, without reunification there may not have been any impact from novel food products.

This argument is also sometimes skirted around with regards to the valuing of health states. Should it be the preferences of healthy people, or the experienced utility of sick people, that determine health state values? Do physical trauma and disease reveal our underlying preferences for different health states, or do they transform us to have different preferences entirely? Any study looking at the effect of disease on health status or quality of life could not distinguish between the two. Yet the two cases are akin to using the same or different groups of people to do the valuation of health states.

Consider also something like estimating the impact of retirement on health and quality of life. If self-reported quality of life is observed to improve in one of these studies, we don’t know if that is because retirement has satisfied a pre-existing preference for the retired lifestyle, or retirement has transformed a person’s preferences. In the latter case, the appropriate control group to evaluate the causal effect of retirement is not non-retired persons.

Paul and Healy do not make their argument to try to prevent or undermine research in the social sciences, they interpret their conclusion as a “methodological challenge”. The full implications of the above arguments have not been explored but could be potentially great and new innovations in methodology to estimate average causal effects could be warranted. How this may be achieved, I’ll have to admit, I do not know.

Credits