Rita Faria’s journal round-up for 28th January 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Appraising the value of evidence generation activities: an HIV modelling study. BMJ Global Health [PubMed] Published 7th December 2018

How much should we spend on implementing our health care strategy versus getting more information to devise a better strategy? Should we devolve budgets to regions or administer the budget centrally? These are difficult questions and this new paper by Beth Woods et al has a brilliant stab at answering them.

The paper looks at the HIV prevention and treatment policies in Zambia. It starts by finding the most cost-effective strategy and the corresponding budget in each region, given what is currently known about the prevalence of the infection, the effectiveness of interventions, etc. The idea is that the regions receive a cost-effective budget to implement a cost-effective strategy. The issue is that the cost-effective strategy and budget are devised according to what we currently know. In practice, regions might face a situation on the ground which is different from what was expected. Regions might not have enough budget to implement the strategy or might have some leftover.

What if we spend some of the budget to get more information to make a better decision? This paper considers the value of perfect information given the costs of research. Depending on the size of the budget and the cost of research, it may be worthwhile to divert some funds to get more information. But what if we had more flexibility in the budgetary policy? This paper tests 2 more budgetary options: a national hard budget but with the flexibility to transfer funds from under- to overspending regions, and a regional hard budget with a contingency fund.

The results are remarkable. The best budgetary policy is to have a national budget with the flexibility to reallocate funds across regions. This is a fascinating paper, with implications not only for prioritisation and budget setting in LMICs but also for high-income countries. For example, the 2012 Health and Social Care Act broke down PCTs into smaller CCGs and gave them hard budgets. Some CCGs went into deficit, and there are reports that some interventions have been cut back as a result. There are probably many reasons for the deficit, but this paper shows that hard regional budgets clearly have negative consequences.

Health economics methods for public health resource allocation: a qualitative interview study of decision makers from an English local authority. Health Economics, Policy and Law [PubMed] Published 11th January 2019

Our first paper looked at how to use cost-effectiveness to allocate resources between regions and across health care services and research. Emma Frew and Katie Breheny look at how decisions are actually made in practice, but this time in a local authority in England. Another change of the 2012 Health and Social Care Act was to move public health responsibilities from the NHS to local authorities. Local authorities are now given a ring-fenced budget to implement cost-effective interventions that best match their needs. How do they make decisions? Thanks to this paper, we’re about to find out.

This paper is an enjoyable read and quite an eye-opener. It was startling that health economics evidence was not much used in practice. But the barriers that were cited are not insurmountable. And the suggestions by the interviewees were really useful. There were suggestions about how economic evaluations should consider the local context to get a fair picture of the impact of the intervention to services and to the population, and to move beyond the trial into the real world. Equity was mentioned too, as well as broadening the outcomes beyond health. Fortunately, the health economics community is working on many of these issues.

Lastly, there was a clear message to make economic evidence accessible to lay audiences. This is a topic really close to my heart, and something I’d like to help improve. We have to make our work easy to understand and use. Otherwise, it may stay locked away in papers rather than do what we intended it for. Which is, at least in my view, to help inform decisions and to improve people’s lives.

I found this paper reassuring in that there is clearly a need for economic evidence and a desire to use it. Yes, there are some teething issues, but we’re working in the right direction. In sum, the future for health economics is bright!

Survival extrapolation in cancer immunotherapy: a validation-based case study. Value in Health Published 13th December 2018

Often, the cost-effectiveness of cancer drugs hangs in the method to extrapolate overall survival. This is because many cancer drugs receive their marketing authorisation before most patients in the trial have died. Extrapolation is tested extensively in the sensitivity analysis, and this is the subject of many discussions in NICE appraisal committees. Ultimately, at the point of making the decision, the correct method to extrapolate is a known unknown. Only in hindsight can we know for sure what the best choice was.

Ash Bullement and colleagues take advantage of hindsight to know the best method for extrapolation of a clinical trial of an immunotherapy drug. Survival after treatment with immunotherapy drugs is more difficult to predict because some patients can survive for a very long time, while others have much poorer outcomes. They fitted survival models to the 3-year data cut, which was available at the time of the NICE technology appraisal. Then they compared their predictions to the observed survival in the 5-year data cut and to long-term survival trends from registry data. They found that the piecewise model and a mixture-cure model had the best predictions at 5 years.

This is a relevant paper for those of us who work in the technology appraisal world. I have to admit that I can be sceptical of piecewise and mixture-cure models, but they definitely have a role in our toolbox for survival extrapolation. Ideally, we’d have a study like this for all the technology appraisals hanging on the survival extrapolation so that we can take learnings across cancers and classes of drugs. With time, we would get to know more about what works best for which condition or drug. Ultimately, we may be able to get to a stage where we can look at the extrapolation with less inherent uncertainty.

Credits

Chris Sampson’s journal round-up for 17th September 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Does competition from private surgical centres improve public hospitals’ performance? Evidence from the English National Health Service. Journal of Public Economics Published 11th September 2018

This study looks at proper (supply-side) privatisation in the NHS. The subject is the government-backed introduction of Independent Sector Treatment Centres (ISTCs), which, in the name of profit, provide routine elective surgical procedures to NHS patients. ISTCs were directed to areas with high waiting times and began rolling out from 2003.

The authors take pre-surgery length of stay as a proxy for efficiency and hypothesise that the entry of ISTCs would improve efficiency in nearby NHS hospitals. They also hypothesise that the ISTCs would cream-skim healthier patients, leaving NHS hospitals to foot the bill for a more challenging casemix. Difference-in-difference regressions are used to test these hypotheses, the treatment group being those NHS hospitals close to ISTCs and the control being those not likely to be affected. The authors use patient-level Hospital Episode Statistics from 2002-2008 for elective hip and knee replacements.

The key difficulty here is that the trend in length of stay changed dramatically at the time ISTCs began to be introduced, regardless of whether a hospital was affected by their introduction. This is because there was a whole suite of policy and structural changes being implemented around this period, many targeting hospital efficiency. So we’re looking at comparing new trends, not comparing changes in existing levels or trends.

The authors’ hypotheses prove right. Pre-surgery length of stay fell in exposed hospitals by around 16%. The ISTCs engaged in risk selection, meaning that NHS hospitals were left with sicker patients. What’s more, the savings for NHS hospitals (from shorter pre-surgery length of stay) were more than undermined by an increase in post-surgery length of stay, which may have been due to the change in casemix.

I’m not sure how useful difference-in-difference is in this case. We don’t know what the trend would have been without the intervention because the pre-intervention trend provides no clues about it and, while the outcome is shown to be unrelated to selection into the intervention, we don’t know whether selection into the ISTC intervention was correlated with exposure to other policy changes. The authors do their best to quell these concerns about parallel trends and correlated policy shocks, and the results appear robust.

Broadly speaking, the study satisfies my prior view of for-profit providers as leeches on the NHS. Still, I’m left a bit unsure of the findings. The problem is, I don’t see the causal mechanism. Hospitals had the financial incentive to be efficient and achieve a budget surplus without competition from ISTCs. It’s hard (for me, at least) to see how reduced length of stay has anything to do with competition unless hospitals used it as a basis for getting more patients through the door, which, given that ISTCs were introduced in areas with high waiting times, the hospitals could have done anyway.

While the paper describes a smart and thorough analysis, the findings don’t tell us whether ISTCs are good or bad. Both the length of stay effect and the casemix effect are ambiguous with respect to patient outcomes. If only we had some PROMs to work with…

One method, many methodological choices: a structured review of discrete-choice experiments for health state valuation. PharmacoEconomics [PubMed] Published 8th September 2018

Discrete choice experiments (DCEs) are in vogue when it comes to health state valuation. But there is disagreement about how they should be conducted. Studies can differ in terms of the design of the choice task, the design of the experiment, and the analysis methods. The purpose of this study is to review what has been going on; how have studies differed and what could that mean for our use of the value sets that are estimated?

A search of PubMed for valuation studies using DCEs – including generic and condition-specific measures – turned up 1132 citations, of which 63 were ultimately included in the review. Data were extracted and quality assessed.

The ways in which the studies differed, and the ways in which they were similar, hint at what’s needed from future research. The majority of recent studies were conducted online. This could be problematic if we think self-selecting online panels aren’t representative. Most studies used five or six attributes to describe options and many included duration as an attribute. The methodological tweaks necessary to anchor at 0=dead were a key source of variation. Those using duration varied in terms of the number of levels presented and the range of duration (from 2 months to 50 years). Other studies adopted alternative strategies. In DCE design, there is a necessary trade-off between statistical efficiency and the difficulty of the task for respondents. A variety of methods have been employed to try and ease this difficulty, but there remains a lack of consensus on the best approach. An agreed criterion for this trade-off could facilitate consistency. Some of the consistency that does appear in the literature is due to conformity with EuroQol’s EQ-VT protocol.

Unfortunately, for casual users of DCE valuations, all of this means that we can’t just assume that a DCE is a DCE is a DCE. Understanding the methodological choices involved is important in the application of resultant value sets.

Trusting the results of model-based economic analyses: is there a pragmatic validation solution? PharmacoEconomics [PubMed] Published 6th September 2018

Decision models are almost never validated. This means that – save for a superficial assessment of their outputs – they are taken at good faith. That should be a worry. This article builds on the experience of the authors to outline why validation doesn’t take place and to try to identify solutions. This experience includes a pilot study in France, NICE Evidence Review Groups, and the perspective of a consulting company modeller.

There are a variety of reasons why validation is not conducted, but resource constraints are a big part of it. Neither HTA agencies, nor modellers themselves, have the time to conduct validation and verification exercises. The core of the authors’ proposed solution is to end the routine development of bespoke models. Models – or, at least, parts of models – need to be taken off the shelf. Thus, open source or otherwise transparent modelling standards are a prerequisite for this. The key idea is to create ‘standard’ or ‘reference’ models, which can be extensively validated and tweaked. The most radical aspect of this proposal is that they should be ‘freely available’.

But rather than offering a path to open source modelling, the authors offer recommendations for how we should conduct ourselves until open source modelling is realised. These include the adoption of a modular and incremental approach to modelling, combined with more transparent reporting. I agree; we need a shift in mindset. Yet, the barriers to open source models are – I believe – the same barriers that would prevent these recommendations from being realised. Modellers don’t have the time or the inclination to provide full and transparent reporting. There is no incentive for modellers to do so. The intellectual property value of models means that public release of incremental developments is not seen as a sensible thing to do. Thus, the authors’ recommendations appear to me to be dependent on open source modelling, rather than an interim solution while we wait for it. Nevertheless, this is the kind of innovative thinking that we need.

Credits