Chris Sampson’s journal round-up for 17th December 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Health related quality of life aspects not captured by EQ-5D-5L: results from an international survey of patients. Health Policy Published 14th December 2018

Generic preference-based measures, such as the EQ-5D, cannot capture all aspects of health-related quality of life. They’re not meant to. Rather, their purpose is to capture just enough information to be able to adequately distinguish between health states with respect to the domains deemed normatively relavent to decisionmakers. The stated aim of this paper is to determine whether people with a variety of chronic conditions believe that their experiences can be adequately represented by the EQ-5D-5L.

The authors conducted an online survey, identifying participants through 320 patient associations across 47 countries. Participants were asked to complete the EQ-5D-5L and then asked if any aspects of their illness, which had a “big impact” on their health, were not captured by the EQ-5D-5L. 1,031 people started the survey and 767 completed it. More than half were from the UK. 51% of respondents said that there was some aspect of health not captured by the EQ-5D-5L. Of them, 19% mentioned fatigue, 12% mentioned medication side effects, 9.5% mentioned co-morbid conditions, and then a bunch of others in smaller proportions.

It’s nice to know what people think, but I have a few concerns about the usefulness of this study. One of the main problems is that it doesn’t seem safe to assume that respondents interpret “big impact” as meaning “an impact that is independently important in determining your overall level of quality of life”. So, even if we accept that people judging something to be important makes it important (which I’m not sure it does), then we still can’t be sure whether what they are identifying is within the scope of what we’re trying to measure. For starters, I can see no justification for including a ‘medication side effects’ domain. There’s also some concern about selection and attrition. I’d guess that people with more complicated or less common health concerns would be more likely to start and finish a survey about more complicated or less common health concerns.

The main thing I took from this study is that half of respondents with chronic diseases thought that the EQ-5D-5L captured every single aspect of health that had a “big impact”, and that there wasn’t broad support for any other specific dimension.

Reducing drug wastage in pharmaceuticals dosed by weight or body surface areas by optimising vial sizes. Applied Health Economics and Health Policy [PubMed] Published 5th December 2018

It’s common for pharmaceuticals to be wasted. Not just those out-of-date painkillers you threw in the bin, but also the expensive stuff being used in hospitals. One of the main reasons that waste occurs is that vials are made to specific sizes and, often, dosage varies from patient to patient – according to weight, for example – and doesn’t match the vial size. Suppose that vials are available as 50mg and 80mg and that an individual requires a 60mg dose. One way to address this might be to allow for vial sharing, whereby the leftovers are given to the next patient. But that isn’t always possible. So, we might like to consider what the best combination of available vial sizes should be, given the characteristics of the population.

In this paper, the authors set out the problem mathematically. Essentially, the optimisation problem is to minimise cost across the population subject to the vial sizes. An example is presented for two drugs (pembrolizumab and cabazitaxel), simulating patients based on samples drawn from the Health Survey for England. Simplifications are applied to the examples, such as setting a constraint of 8 vials per patient and assuming that prices are linear (i.e. fixed per milligram).

Pembrolizumab is currently available in 50mg and 100mg vials, and the authors estimate current wastage to be 13.2%. The simulations show that switching the 50mg to a 70mg would cut wastage to 8.6%. Cabazitaxel is available in 60mg vials, resulting in 19.4% wastage. Introducing a 12.5mg vial would cut wastage by around two thirds. An important general finding, which should be self-evident, is that vial sizes should not be divisible by each other, as this limits the number of possible combinations.

Depending on when vial sizes are determined (e.g. pre- or post-authorisation), pharmaceutical companies might use it to increase profit margins, or health systems might use it to save costs. Regardless, wastage isn’t useful. Evidence-based manufacture is an example of one of those best ideas; the sort that is simple and seems obvious once it’s spelt out. It’s a rare opportunity to benefit patients, health care providers, and manufacturers, with no significant burden on policymakers.

Death or debt? National estimates of financial toxicity in persons with newly-diagnosed cancer. The American Journal of Medicine [PubMed] Published October 2018

If you’re British, what’s the scariest thing about an ‘Americanised’ (/Americanized) health care system? Expensive inhalers? A shortened life expectancy? My guess is that the prospect of having to add financial ruin to terminal illness looms pretty large. You should make sure your fear is evidence-based. Here’s a paper to shake in the face of anyone who doesn’t support universal health care.

The authors use data from the Health and Retirement Study from 1998-2014, which includes people over 50 years of age and includes new (self-reported) diagnoses of cancer. This was the basis for inclusion in the study, with over 9.5 million new diagnoses of cancer. Up to two years pre-diagnosis was taken as a baseline. The data set also includes information on participants’ assets and debts, allowing the authors to use change in net worth as the primary outcome. Generalised linear models were used to assess various indicators of financial toxicity, including change or incurrence of consumer debt, mortgage debt, and home equity debt at two- and four-year follow-up. In addition to cancer diagnosis, various chronic comorbidities and socio-demographic variables were included in the models.

Shockingly, after two years following diagnosis, 42.4% of people had depleted their entire life’s assets. Average net worth had dropped $92,000. After four years, 38.2% were still insolvent. Women, older people, people who weren’t White, people with Medicaid, and those with worsening cancer status were among those more likely to have completely depleted their assets within two years. Having private insurance and being married had protective effects, as we might expect. There were some interesting findings associated with the 2008 financial crisis, which also seemed to be protective. And a protective effect associated with psychiatric comorbidity deserves more thought.

It’s difficult to explain away any (let alone all) of the magnitude of these findings. The analysis seems robust. But, given all other evidence available about out-of-pocket costs for cancer patients in the US, it should be shocking but not unexpected. The authors describe financial toxicity as ‘unintended’. There’s nothing unintended about this. Policymakers in the US keep deciding that they’d prefer to destroy the lives of sick people than allow for the spreading of that financial risk.

Credits

Chris Sampson’s journal round-up for 24th April 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

The association between socioeconomic status and adult fast-food consumption in the U.S. Economics & Human Biology Published 19th April 2017

It’s an old stereotype, that people of lower socioeconomic status eat a lot of fast food, and that this contributes to poorer nutritional intake and therefore poorer health. As somebody with a deep affection for Gregg’s pasties and Pot Noodles, I’ve never really bought into the idea. Mainly because a lot of fast food isn’t particularly cheap. And anyway, what about all those cheesy paninis that the middle classes are chowing down on in Starbuck’s? Plus, wouldn’t the more well-off folk have a higher opportunity cost of time that would make fast food more attractive? Happily for me, this paper provides some evidence to support these notions. The study uses 3 recent waves of data from the National Longitudinal Survey of Youth, with 8136 participants born between 1957 and 1964. The authors test for an income gradient in adult fast food consumption, as well as any relationship to wealth. I think that makes it extra interesting because wealth is likely to be more indicative of social class (which is probably what people really think about when it comes to the stereotype). The investigation of wealth also sets it apart from previous studies, which report mixed findings for the income gradient. The number of times people consumed fast food in the preceding 7 days is modelled as a function of price, time requirement, preferences and monetary resources (income and wealth). The models included estimators for these predictors and a number of health behaviour indicators and demographic variables. Logistic models distinguish fast food eaters and OLS and negative binomial models estimate how often fast food is eaten. 79% ate fast food at least once, and 23% were frequent fast food eaters. In short, there isn’t much variation by income and wealth. What there is suggests an inverted U-shape pattern, which is more pronounced when looking at income than wealth. The regression results show that there isn’t much of a relationship between wealth and the number of times a respondent ate fast food. Income is positively related to the number of fast food meals eaten. But other variables were far more important. Living in a central city and being employed were associated with greater fast food consumption, while a tendency to check ingredients was associated with a lower probability of eating fast food. The study has some important policy implications, particularly as our preconceptions may mean that interventions are targeting the wrong groups of people.

Views of the UK general public on important aspects of health not captured by EQ-5D. The Patient [PubMed] Published 13th April 2017

The notion that the EQ-5D might not reflect important aspects of health-related quality of life is a familiar one for those of us working on trial-based analyses. Some of the claims we hear might just be special pleading, but it’s hard to deny at least some truth. What really matters – if we’re trying to elicit societal values – is what the public thinks. This study tries to find out. Face-to-face interviews were conducted in which people completed time trade-off and discrete choice experiment tasks for EQ-5D-5L states. These were followed by a set of questions about the value of alternative upper anchors (e.g. ‘full health’, ‘11111’) and whether respondents believed that relevant health or quality of life domains were missing from the EQ-5D questionnaire. This paper focuses on the aspects of health that people identified as being missing, using a content analysis framework. There were 436 respondents, about half of whom reported being in a 11111 EQ-5D state. 41% of participants considered the EQ-5D questionnaire to be missing some important aspect of health. The authors identified 22 (!) different themes and attached people’s responses to these themes. Sensory deprivation and mental health were the two biggies, with many more responses than other themes. 50 people referred to vision, hearing or other sensory loss. 29 referred to mental health generally while 28 referred to specific mental health problems. This study constitutes a guide for future research and for the development of the EQ-5D and other classification systems. Obviously, the objective of the EQ-5D is not to reflect all domains. And it may be that the public’s suggestions – verbatim, at least – aren’t sensible. 10 people stated ‘cancer’, for example. But the importance of mental health and sensory deprivation in describing the evaluative space does warrant further investigation.

Re-thinking ‘The different perspectives that can be used when eliciting preferences in health’. Health Economics [PubMed] Published 21st March 2017

Pedantry is a virtue when it comes to valuing health states, which is why you’ll often find me banging on about the need for clarity. And why I like this paper. The authors look at a 2003 article by Dolan and co that outlined the different perspectives that health preference researchers ought to be using (though notably aren’t) when presenting elicitation questions to respondents. Dolan and co defined 6 perspectives along two dimensions: preferences (personal, social and socially-inclusive personal) and context (ex ante and ex post). This paper presents the argument that Dolan and co’s framework is incomplete. The authors throw new questions into the mix regarding who the user of treatment is, who the payer is and who is assessing the value, as well as introducing consideration of the timing of illness and the nature of risk. This gives rise to a total of 23 different perspectives along the dimensions of preferences (personal, social, socially-inclusive personal, non-use and proxy) and context (4 ex ante and 1 ex post). This new classification makes important distinctions between different perspectives, and health preference researchers really ought to heed its advice. However, I still think it’s limited. As I described in a recent blog post and discussed at a recent HESG meeting, I think the way we talk about ex ante and ex post in this context is very confused. In fact, this paper demonstrates the problem nicely. The authors first discuss the ex post context, the focus being on the value of ‘treatment’ (an event). Then the paper moves on to the ex ante context, and the discussion relates to ‘illness’ (a state). The problem is that health state valuation exercises aren’t (explicitly) about valuing treatments – or illnesses – but about valuing health states in relation to other health states. ‘Ex ante’ means making judgements about something before an event, and ‘ex post’ means to do so after it. But we’re trying to conduct health state valuation, not health event valuation. May the pedantry continue.

Credits

#HEJC for 17/10/2013

The next #HEJC discussion will take place Thursday 17th October, at 8am London time. Join the Facebook event here. For more information about the Health Economics Twitter Journal Club and how to take part, click here.

The paper for discussion this month is a working paper published by IZA. The authors are Maja Adena and Michal Myck. The title of the paper is:

“Poverty and transitions in health”

Following the meeting, a transcript of the Twitter discussion can be downloaded here.

Links to the article

Direct: http://ftp.iza.org/dp7532.pdf

RePEc: http://ideas.repec.org/p/iza/izadps/dp7532.html

Other: http://www.diw.de/sixcms/detail.php?id=diw_01.c.427201.de

Summary of the paper

My interest in discussing ‘Poverty and transitions in health’ by Adena and Myck was driven by my own curiosity in the area of socio-economic determinants of health and well-being more generally. The income based approach to assessing a country’s progress or assessing welfare within nations has faced sustained criticism from a number of quarters, most notably the Commission on the Measurement of Economic Performance and Social Progress (Stiglitz et al. 2009). Even when it comes to assessing poverty, the method of drawing a relative income poverty threshold has faced further scrutiny, most notably from advocates of a multidimensional poverty approach (Alkire & Foster, 2011).

The paper by Adena and Myck is another critique on the relative income approach on assessing wellness, but in a new light – by investigating the ability of relative income to predict future health outcomes in an older population group. The authors argue that old age poverty is one of the key challenges to developed countries, with the demographics of the over 65 expected to make up almost three in every ten EU citizens by 2060 adding concerns about the sustainability of national pension plans. The authors argue that epidemiological research has so far failed to account for the relationship between material conditions and health in the later stages of life to date.

The data applied to investigate this research question were drawn from 12 European countries from a large (n=29,110) European Panel Survey, the Survey for Health, Aging and Retirement in Europe (SHARE). The percentage of the population aged 50-64 at baseline was 53.23% with the remainder 65 and older. Males accounted for 54.69% of the sample. At baseline Wave 2 of the SHARE dataset (year 2006) was used to predict binary outcomes of good or bad health in Wave 4 of the survey (year 2012), which depended on whether or not an individual was in good or bad health at baseline (Wave 2). Three measures of “material circumstances” were applied to predict three measures of ‘health’ in this study (as well as mortality). The three material circumstances measures were:

  1. Income poverty – 60% of the median equivalised household income
  2. Subjective poverty – having difficulty to “make ends meet” per month
  3. Wealth poverty – bottom tertile of country wealth distributions.

The three health measures were:

  1. Self-assessed health status (SAH) – “fair” or “poor” health status on a five-part scale
  2. Symptoms of poor health (SMT) – poor if they have 3 or more of 12 symptoms measured
  3. Limitations in performing activities of daily living (ADL) – poor if they have 3 or more of 23 ADLs.

The authors’ key findings suggest that the “broader measures” of subjective and wealth poverty are more accurately able to predict negative health outcomes than income poverty (in some cases, no relationship was found between income poverty and health outcomes). People who were in bad health in Wave 2 are also less likely to recover if they are classified as subjective or wealth poor in Wave 4. The most striking finding by Adena and Myck is the probability of death when reported as subjectively poor in Wave 2. The probability of dying is 40.3% higher for men and 58.3% higher for all aged between 50-64 years old. The authors conclude by stating that “improvements in material conditions may not only translate into better quality of life but also living longer”

Discussion points

  • The method of defining health poverty as 3 problems for the health measures SMT and ADL is reported as arbitrary but common. How common is this practice? No reference to other examples in the paper.
  • Should having 3 problems be equivalent irrespective of ‘problem’ under consideration? Might be worth considering literature on ‘core’ poverty methods (Clark & Qizilbash, 2008).
  • Sensitivity analysis considered people with two or more problems: I was expecting an analysis which went higher (i.e. four or more problems), especially for ADL.
  • Sensitivity analysis would have also been useful for the material measures. This paper shows problems with the 60% median relative income threshold, rather than relative income itself.
  • Is the method for defining wealth within a country appropriate for defining “wealth poverty”?
  • While the authors touched on qualitative information contained in Wave 3 in the sensitivity analysis, this could warrant future research as to the drivers of changes in health outcomes over time.
  • Personally, I did not feel the link to Grossman’s (1972) model on health stock was necessary. Felt the results, if properly presented, could stand up on their own merits.
  • Imputation of missing values for income and wealth needed further explanation.
  • Related to Footnote 11: why were the result in Hahn et al. (1995) different than what were found in this study? This requires more detailed consideration.

Can’t join in with the Twitter discussion? Add your thoughts on the paper in the comments below.