Chris Sampson’s journal round-up for 17th June 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Mental health: a particular challenge confronting policy makers and economists. Applied Health Economics and Health Policy [PubMed] Published 7th June 2019

This paper has a bad title. You’d never guess that its focus is on the ‘inconsistency of preferences’ expressed by users of mental health services. The idea is that people experiencing certain mental health problems (e.g. depression, conduct disorders, ADHD) may express different preferences during acute episodes. Preference inconsistency, the author explains, can result in failures in prediction (because behaviour may contradict expectations) and failures in evaluation (because… well, this is a bit less clear). Because of preference inconsistency, a standard principal-agent model cannot apply to treatment decisions. Conventional microeconomic theory cannot apply. If this leaves you wondering “so what has this got to do with economists?” then you’re not alone. The author of this article believes that our role is to identify suitable agents who can interpret patients’ inconsistent preferences and make appropriate decisions on their behalf.

But, after introducing this challenge, the framing of the issue seems to change and the discussion becomes about finding an agent who can determine a patient’s “true preferences” from “conflicting statements”. That seems to me to be a bit different from the issue of ‘inconsistent preferences’, and the phrase “true preferences” should raise an eyebrow of any sceptical economist. From here, the author describes some utility models of perfect agency and imperfect agency – the latter taking account of the agent’s opportunity cost of effort. The models include error in judging whether the patient is exhibiting ‘true preferences’ and the strength of the patient’s expression of preference. Five dimensions of preference with respect to treatment are specified: when, what, who, how, and where. Eight candidate agents are specified: family member, lay helper, worker in social psychiatry, family physician, psychiatrist/psychologist, health insurer, government, and police/judge. The knowledge level of each agent in each domain is surmised and related to the precision of estimates for the utility models described. The author argues that certain agents are better at representing a patient’s ‘true preferences’ within certain domains, and that no candidate agent will serve an optimal role in every domain. For instance, family members are likely to be well-placed to make judgements with little error, but they will probably have a higher opportunity cost than care professionals.

The overall conclusion that different agents will be effective in different contexts seems logical, and I support the view of the author that economists should dedicate themselves to better understanding the incentives and behaviours of different agents. But I’m not convinced by the route to that conclusion.

Exploring the impact of adding a respiratory dimension to the EQ-5D-5L. Medical Decision Making [PubMed] Published 16th May 2019

I’m currently working on a project to develop and test EQ-5D bolt-ons for cognition and vision, so I was keen to see the methods reported in this study. The EQ-5D-5L has been shown to have only a weak correlation with clinically-relevant changes in the context of respiratory disease, so it might be worth developing a bolt-on (or multiple bolt-ons) that describe relevant functional changes not captured by the core dimensions of the EQ-5D. In this study, the authors looked at how the inclusion of respiratory dimensions influenced utility values.

Relevant disease-specific outcome measures were reviewed. The researchers also analysed EQ-5D-3L data and disease-specific outcome measure data from three clinical studies in asthma and COPD, to see how much variance in visual analogue scores was explained by disease-specific items. The selection of potential bolt-ons was also informed by principal-component analysis to try to identify which items form constructs distinct from the EQ-5D dimensions. The conclusion of this process was that two other dimensions represented separate constructs and could be good candidates for bolt-ons: ‘limitations in physical activities due to shortness of breath’ and ‘breathing problems’. Some think-aloud interviews were conducted to ensure that the bolt-ons made sense to patients and the general public.

A valuation study using time trade-off and discrete choice experiments was conducted in the Netherlands with a representative sample of 430 people from the general public. The sample was split in two, with each half completing the EQ-5D-5L with one or the other bolt-on. The Dutch EQ-5D-5L valuation study was used as a comparator data set. The inclusion of the bolt-ons seemed to extend the scale of utility values; the best-functioning states were associated with higher utility values when the bolt-ons were added and the worst-functioning states were associated with lower values. This was more pronounced for the ‘breathing problems’ bolt-on. The size of the coefficients on the two bolt-ons (i.e. the effect on utility values) was quite different. The ‘physical activities’ bolt-on had coefficients similar in size to self-care and usual activities. The coefficients on the ‘breathing problems’ bolt-on were a bit larger, comparable in size with those of the mobility dimension.

The authors raise an interesting question in light of their findings from the development process, in which the quantitative analysis supported a ‘symptoms’ dimension and patients indicated the importance of a dimension relating to ‘physical activities’. They ask whether it is more important for an item to be relevant or for it to be quantitatively important for valuation. Conceptually, it seems to me that the apparent added value of a ‘physical activity’ bolt-on is problematic for the EQ-5D. The ‘physical activity’ bolt-on specifies “climbing stairs, going for a walk, carrying things, gardening” as the types of activities it is referring to. Surely, these should be reflected in ‘mobility’ and ‘usual activities’. If they aren’t then I think the ‘usual activities’ descriptor, in particular, is not doing its job. What we might be seeing here, more than anything, is the flaws in the development process for the original EQ-5D descriptors. Namely, that they didn’t give adequate consideration to the people who would be filling them in. Nevertheless, it looks like a ‘breathing problems’ bolt-on could be a useful part of the EuroQol armoury.

Technology and college student mental health: challenges and opportunities. Frontiers in Psychiatry [PubMed] Published 15th April 2019

Universities in the UK and elsewhere are facing growing demand for counselling services from students. That’s probably part of the reason that our Student Mental Health Research Network was funded. Some researchers have attributed this rising demand to the use of personal computing technologies – smartphones, social media, and the like. No doubt, their use is correlated with mental health problems, certainly through time and probably between individuals. But causality is uncertain, and there are plenty of ways in which – as set out in this article – these technologies might be used in a positive way.

Most obviously, smartphones can be a platform for mental health programmes, delivered via apps. This is particularly important because there are perceived and actual barriers for students to accessing face-to-face support. This is an issue for all people with mental health problems. But the opportunity to address this issue using technology is far greater for students, who are hyper-connected. Part of the problem, the authors argue, is that there has not been a focus on implementation, and so the evidence that does exist is from studies with self-selecting samples. Yet the opportunity is great here, too, because students are often co-located with service providers and already engaged with course-related software.

Challenges remain with respect to ethics, privacy, accountability, and duty of care. In the UK, we have the benefit of being able to turn to GDPR for guidance, and universities are well-equipped to assess the suitability of off-the-shelf and bespoke services in terms of their ethical implications. The authors outline some possible ways in which universities can approach implementation and the challenges therein. Adopting these approaches will be crucial if universities are to address the current gap between the supply and demand for services.

Credits

Chris Sampson’s journal round-up for 31st July 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

An exploratory study on using principal-component analysis and confirmatory factor analysis to identify bolt-on dimensions: the EQ-5D case study. Value in Health Published 14th July 2017

I’m not convinced by the idea of using bolt-on dimensions for multi-attribute utility instruments. A state description with a bolt-on refers to a different evaluative space, and therefore is not comparable with the progenitor, thus undermining its purpose. Maybe this study will persuade me otherwise. The authors analyse data from the Multi Instrument Comparison database, including responses to EQ-5D-5L, SF-6D, HUI3, AQoL 8D and 15D questionnaires, as well as the ICECAP and 3 measures of subjective well-being. Content analysis was used to allocate items from the measures to underlying constructs of health-related quality of life. The sample of 8022 was randomly split, with one half used for principal-component analysis and confirmatory factor analysis, and the other used for validation. This approach looks at the underlying constructs associated with health-related quality of life and the extent to which individual items from the questionnaires influence them. Candidate items for bolt-ons are those items from questionnaires other than the EQ-5D that are important and not otherwise captured by the EQ-5D questions. The principal-component analysis supported a 9-component model: physical functioning, psychological symptoms, satisfaction, pain, relationships, speech/cognition, hearing, energy/sleep and vision. The EQ-5D only covered physical functioning, psychological symptoms and pain. Therefore, items from measures that explain the other 6 components represent bolt-on candidates for the EQ-5D. This study succeeds in its aim. It demonstrates what appears to be a meaningful quantitative approach to identifying items not fully captured by the EQ-5D, which might be added as bolt-ons. But it doesn’t answer the question of which (if any) of these bolt-ons ought to be added, or in what circumstances. That would at least require pre-definition of the evaluative space, which might not correspond to the authors’ chosen model of health-related quality of life. If it does, then these findings would be more persuasive as a reason to do away with the EQ-5D altogether.

Endogenous information, adverse selection, and prevention: implications for genetic testing policy. Journal of Health Economics Published 13th July 2017

If you can afford it, there are all sorts of genetic tests available nowadays. Some of them could provide valuable information about the risk of particular health problems in the future. Therefore, they can be used to guide individuals’ decisions about preventive care. But if the individual’s health care is financed through insurance, that same information could prove costly. It could reinforce that classic asymmetry of information and adverse selection problem. So we need policy that deals with this. This study considers the incentives and insurance market outcomes associated with four policy options: i) mandatory disclosure of test results, ii) voluntary disclosure, iii) insurers knowing the test was taken, but not the results and iv) complete ban on the use of test information by insurers. The authors describe a utility model that incorporates the use of prevention technologies, and available insurance contracts, amongst people who are informed or uninformed (according to whether they have taken a test) and high or low risk (according to test results). This is used to estimate the value of taking a genetic test, which differs under the four different policy options. Under voluntary disclosure, the information from a genetic test always has non-negative value to the individual, who can choose to only tell their insurer if it’s favourable. The analysis shows that, in terms of social welfare, mandatory disclosure is expected to be optimal, while an information ban is dominated by all other options. These findings are in line with previous studies, which were less generalisable according to the authors. In the introduction, the authors state that “ethical issues are beyond the scope of this paper”. That’s kind of a problem. I doubt anybody who supports an information ban does so on the basis that they think it will maximise social welfare in the fashion described in this paper. More likely, they’re worried about the inequities in health that mandatory disclosure could reinforce, about which this study tells us nothing. Still, an information ban seems to be a popular policy, and studies like this indicate that such decisions should be reconsidered in light of their expected impact on social welfare.

Returns to scientific publications for pharmaceutical products in the United States. Health Economics [PubMedPublished 10th July 2017

Publication bias is a big problem. Part of the cause is that pharmaceutical companies have no incentive to publish negative findings for their own products. Though positive findings may be valuable in terms of sales. As usual, it isn’t quite that simple when you really think about it. This study looks at the effect of publications on revenue for 20 branded drugs in 3 markets – statins, rheumatoid arthritis and asthma – using an ‘event-study’ approach. The authors analyse a panel of quarterly US sales data from 2003-2013 alongside publications identified through literature searches and several drug- and market-specific covariates. Effects are estimated using first difference and difference in first difference models. The authors hypothesise that publications should have an important impact on sales in markets with high generic competition, and less in those without or with high branded competition. Essentially, this is what they find. For statins and asthma drugs, where there was some competition, clinical studies in high-impact journals increased sales to the tune of $8 million per publication. For statins, volume was not significantly affected, with mediation through price. In rhematoid arthritis, where competition is limited, the effect on sales was mediated by the effect on volume. Studies published in lower impact journals seemed to have a negative influence. Cost-effectiveness studies were only important in the market with high generic competition, increasing statin sales by $2.2 million on average. I’d imagine that these impacts are something with which firms already have a reasonable grasp. But this study provides value to public policy decision makers. It highlights those situations in which we might expect manufacturers to publish evidence and those in which it might be worthwhile increasing public investment to pick up the slack. It could also help identify where publication bias might be a bigger problem due to the incentives faced by pharmaceutical companies.

Credits