Brendan Collins’s journal round-up for 18th March 2019

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Evaluation of intervention impact on health inequality for resource allocation. Medical Decision Making [PubMed] Published 28th February 2019

How should decision-makers factor equity impacts into economic decisions? Can we trade off an intervention’s cost-effectiveness with its impact on unfair health inequalities? Is a QALY just a QALY or should we weight it more if it is gained by someone from a disadvantaged group? Can we assume that, because people of lower socioeconomic position lose more QALYs through ill health, that most interventions should, by default, reduce inequalities?

I really like the health equity plane. This is where you show health impacts (usually including a summary measure of cost-effectiveness like net health benefit or net monetary benefit) and equity impacts (which might be a change in slope index of inequality [SII] or relative index of inequality) on the same plane. This enables decision-makers to identify potential trade-offs between interventions that produce a greater benefit, but have less impact on inequalities, and those that produce a smaller benefit, but increase equity. I think there has been a debate over whether the ‘win-win’ quadrant should be south-east (which would be consistent with the dominant quadrant of the cost-effectiveness plane) or north-east, which is what seems to have been adopted as the consensus and is used here.

This paper showcases a reproducible method to estimate the equity impact of interventions. It considers public health interventions recommended by NICE from 2006-2016, with equity impacts estimated based on whether they targeted specific diseases, risk factors or populations. The disease distributions were based on hospital episode statistics data by deprivation (IMD). The study used equity weights to convert QALYs gained to different social groups into net social welfare. In this case, valuing the most disadvantaged fifth of people’s health at around 6-7 times that of the least disadvantaged fifth. I think there might still be work to be done around reaching consensus for equity weights.

The total expected effect on inequalities is small – full implementation of all recommendations would produce a reduction of the quality-adjusted life expectancy gap between the healthiest and least healthy from 13.78 to 13.34 QALYs. But maybe this is to be expected; NICE does not typically look at vaccinations or screening and has not looked at large scale public health programmes like the Healthy Child Programme in the whole. Reassuringly, where recommended interventions were likely to increase inequality, the trade-off between efficiency and equity was within the social welfare function they had used. The increase in inequality might be acceptable because the interventions were cost-effective – producing 5.6million QALYs while increasing the SII by 0.005. If these interventions are buying health at a good price, then you would hope this might then release money for other interventions that would reduce inequalities.

I suspect that public health folks might not like equity trade-offs at all – trading off equity and cost-effectiveness might be the moral equivalent of trading off human rights – you can’t choose between them. But the reality is that these kinds of trade-offs do happen, and like a lot of economic methods, it is about revealing these implicit trade-offs so that they become explicit, and having ‘accountability for reasonableness‘.

Future unrelated medical costs need to be considered in cost effectiveness analysis. The European Journal of Health Economics [PubMed] [RePEc] Published February 2019

This editorial says that NICE should include unrelated future medical costs in its decision making. At the moment, if NICE looks at a cardiovascular disease (CVD) drug, it might look at future costs related to CVD but it won’t include changes in future costs of cancer, or dementia, which may occur because individuals live longer. But usually unrelated QALY gains will be implicitly included; so there is an inconsistency. If you are a health economic modeller, you know that including unrelated costs properly is technically difficult. You might weight average population costs by disease prevalence so you get a cost estimate for people with coronary heart disease, diabetes, and people without either disease. Or you might have a general healthcare running cost that you can apply to future years. But accounting for a full matrix of competing causes of morbidity and mortality is very tricky if not impossible. To help with this, this group of authors produced the excellent PAID tool, which helps with doing this for the Netherlands (can we have one for the UK please?).

To me, including unrelated future costs means that in some cases ICERs might be driven more by the ratio of future costs to QALYs gained. Whereas currently, ICERs are often driven by the ratio of the intervention costs to QALYs gained. So it might be that a lot of treatments that are currently cost-effective no longer are, or we need to judge all interventions with a higher ICER willingness to pay threshold or value of a QALY. The authors suggest that, although including unrelated medical costs usually pushes up the ICER, it should ultimately result in better decisions that increase health.

There are real ethical issues here. I worry that including future unrelated costs might be used for an integrated care agenda in the NHS, moving towards a capitation system where the total healthcare spend on any one individual is capped, which I don’t necessarily think should happen in a health insurance system. Future developments around big data mean we will be able to segment the population a lot better and estimate who will benefit from treatments. But I think if someone is unlucky enough to need a lot of healthcare spending, maybe they should have it. This is risk sharing and, without it, you may get the ‘double jeopardy‘ problem.

For health economic modellers and decision-makers, a compromise might be to present analyses with related and unrelated medical costs and to consider both for investment decisions.

Overview of cost-effectiveness analysis. JAMA [PubMed] Published 11th March 2019

This paper probably won’t offer anything new to academic health economists in terms of methods, but I think it might be a useful teaching resource. It gives an interesting example of a model of ovarian cancer screening in the US that was published in February 2018. There has been a large-scale trial of ovarian cancer screening in the UK (the UKCTOCS), which has been extended because the results have been promising but mortality reductions were not statistically significant. The model gives a central ICER estimate of $106,187/QALY (based on $100 per screen) which would probably not be considered cost-effective in the UK.

I would like to explore one statement that I found particularly interesting, around the willingness to pay threshold; “This willingness to pay is often represented by the largest ICER among all the interventions that were adopted before current resources were exhausted, because adoption of any new intervention would require removal of an existing intervention to free up resources.”

The Culyer bookshelf model is similar to this, although as well as the ICER you also need to consider the burden of disease or size of the investment. Displacing a $110,000/QALY intervention for 1000 people with a $109,000/QALY intervention for a million people will bust your budget.

This idea works intuitively – if Liverpool FC are signing a new player then I might hope they are better than all of the other players, or at least better than the average player. But actually, as long as they are better than the worst player then the team will be improved (leaving aside issues around different positions, how they play together, etc.).

However, I think that saying that the reference ICER should be the largest current ICER might be a bit dangerous. Leaving aside inefficient legacy interventions (like unnecessary tonsillectomies etc), it is likely that the intervention being considered for investment and the current maximum ICER intervention to be displaced may both be new, expensive immunotherapies. It might be last in, first out. But I can’t see this happening; people are loss averse, so decision-makers and patients might not accept what is seen as a fantastic new drug for pancreatic cancer being approved then quickly usurped by a fantastic new leukaemia drug.

There has been a lot of debate around what the threshold should be in the UK; in England NICE currently use £20,000 – £30,000, up to a hypothetical maximum £300,000/QALY in very specific circumstances. UK Treasury value QALYs at £60,000. Work by Karl Claxton and colleagues suggests that marginal productivity (the ‘shadow price’) in the NHS is nearer to £5,000 – £15,000 per QALY.

I don’t know what the answer to this is. I don’t think the willingness-to-pay threshold for a new treatment should be the maximum ICER of a current portfolio of interventions; maybe it should be the marginal health production cost in a health system, as might be inferred from the Claxton work. Of course, investment decisions are made on other factors, like impact on health inequalities, not just on the ICER.

Credits

Chris Sampson’s journal round-up for 7th May 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Building an international health economics teaching network. Health Economics [PubMedPublished 2nd May 2018

The teaching on my health economics MSc (at Sheffield) was very effective. Experts from our subdiscipline equipped me with the skills that I went on to use on a daily basis in my first job, and to this day. But not everyone gets the same opportunity. And there were only 8 people on my course. Part of the background to the new movement described in this editorial is the observation that demand for health economists outstrips supply. Great for us jobbing health economists, but suboptimal for society. The shortfall has given rise to people teaching health economics (or rather, economic evaluation methods) without any real training in economics. The main purpose of this editorial is to call on health economists (that’s me and you) to pull our weight and contribute to a collective effort to share, improve, and ultimately deliver high-quality teaching resources. The Health Economics education website, which is now being adopted by iHEA, should be the starting point. And there’s now a Teaching Health Economics Special Interest Group. So chip in! This paper got me thinking about how the blog could play its part in contributing to the infrastructure of health economics teaching, so expect to see some developments on that front.

Including future consumption and production in economic evaluation of interventions that save life-years: commentary. PharmacoEconomics – Open [PubMed] Published 30th April 2018

When people live longer, they spend their extra life-years consuming and producing. How much consuming and producing they do affects social welfare. The authors of this commentary are very clear about the point they wish to make, so I’ll just quote them: “All else equal, a given number of quality-adjusted life-years (QALYs) from life prolongation will normally be more costly from a societal perspective than the same number of QALYs from programmes that improve quality of life”. This is because (in high-income countries) most people whose life can be extended are elderly, so they’re not very productive. They’re likely to create a net cost for society (given how we measure value). Asserting that the cost is ‘worth it’ at any level, or simply ignoring the matter, isn’t really good enough because providing life extension will be at the expense of some life-improving treatments which may – were these costs taken into account – improve social welfare. The authors’ estimates suggest that the societal cost of life-extension is far greater than current methods admit. Consumption costs and production gains should be estimated and should be given some weight in decision-making. The question is not whether we should measure consumption costs and production gains – clearly, we should. The question is what weight they ought to be given in decision-making.

Methods for the economic evaluation of changes to the organisation and delivery of health services: principal challenges and recommendations. Health Economics, Policy and Law [PubMedPublished 20th April 2018

The late, great, Alan Maynard liked to speak about redisorganisations in the NHS: large-scale changes to the way services are organised and delivered, usually without a supporting evidence base. This problem extends to smaller-scale service delivery interventions. There’s no requirement for policy-makers to demonstrate that changes will be cost-effective. This paper explains why applying methods of health technology assessment to service interventions can be tricky. The causal chain of effects may be less clear when interventions are applied at the organisational level rather than individual level, and the results will be heavily dependent on the present context. The author outlines five challenges in conducting economic evaluations for service interventions: i) conducting ex-ante evaluations, ii) evaluating impact in terms of QALYs, iii) assessing costs and opportunity costs, iv) accounting for spillover effects, and v) generalisability. Those identified as most limiting right now are the challenges associated with estimating costs and QALYs. Cost data aren’t likely to be readily available at the individual level and may not be easily identifiable and divisible. So top-down programme-level costs may be all we have to work with, and they may lack precision. QALYs may be ‘attached’ to service interventions by applying a tariff to individual patients or by supplementing the analysis with simulation modelling. But more methodological development is still needed. And until we figure it out, health spending is likely to suffer from allocative inefficiencies.

Vog: using volcanic eruptions to estimate the health costs of particulates. The Economic Journal [RePEc] Published 12th April 2018

As sources of random shocks to a system go, a volcanic eruption is pretty good. A major policy concern around the world – particularly in big cities – is the impact of pollution. But the short-term impact of particulate pollution is difficult to identify because there is high correlation amongst pollutants. In this study, the authors use the eruption activity of Kīlauea on the island of Hawaiʻi as a source of variation in particulate pollution. Vog – volcanic smog – includes sulphur dioxide and is similar to particulate pollution in cities, but the fact that Hawaiʻi does not have the same levels of industrial pollutants means that the authors can more cleanly identify the impact on health outcomes. In 2008 there was a big increase in Kīlauea’s emissions when a new vent opened, and the level of emissions fluctuates daily, so there’s plenty of variation to play with. The authors have two main sources of data: emergency admissions (and their associated charges) and air quality data. A parsimonious OLS model is used to estimate the impact of air quality on the total number of admissions for a given day in a given region, with fixed effects for region and date. An instrumental variable approach is also used, which looks at air quality on a neighbouring island and uses wind direction to specify the instrumental variable. The authors find that pulmonary-related emergency admissions increased with pollution levels. Looking at the instrumental variable analysis, a one standard deviation increase in particulate pollution results in 23-36% more pulmonary-related emergency visits (depending on which measure of particulate pollution is being used). Importantly, there’s no impact on fractures, which we wouldn’t expect to be influenced by the particulate pollution. The impact is greatest for babies and young children. And it’s worth bearing in mind that avoidance behaviours – e.g. people staying indoors on ‘voggy’ days – are likely to reduce the impact of the pollution. Despite the apparent lack of similarity between Hawaiʻi and – for example – London, this study provides strong evidence that policy-makers should consider the potential savings to the health service when tackling particulate pollution.

Credits

Chris Sampson’s journal round-up for 20th November 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Effects of health and social care spending constraints on mortality in England: a time trend analysis. BMJ Open [PubMed] Published 15th November 2017

I’d hazard a guess that I’m not the only one here who gets angry about the politics of austerity. Having seen this study’s title, it’s clear that the research could provide fuel for that anger. It doesn’t disappoint. Recent years have seen very low year-on-year increases in public expenditure on health in England. Even worse, between 2010 and 2014, public expenditure on social care actually fell in real terms. This is despite growing need for health and social care. In this study, the authors look at health and social care spending and try to estimate the impact that reduced expenditure has had on mortality in England. The analysis uses spending and mortality data from 2001 onwards and also incorporates mortality projections for 2015-2020. Time trend analyses are conducted using Poisson regression models. From 2001-2010, deaths decreased by 0.77% per year (on average). The mortality rate was falling. Now it seems to be increasing; from 2011-2014, the average number of deaths per year increased by 0.87%. This corresponds to 18,324 additional deaths in 2014, for example. But everybody dies. Extra deaths are really sooner deaths. So the question, really, is how much sooner? The authors look at potential years of life lost and find this figure to be 75,496 life-years greater than expected in 2014, given pre-2010 trends. This shouldn’t come as much of a surprise. Spending less generally achieves less. What makes this study really interesting is that it can tell us who is losing these potential years of life as a result of spending cuts. The authors find that it’s the over-60s. Care home deaths were the largest contributor to increased mortality. A £10 cut in social care spending per capita resulted in 5 additional care home deaths per 100,000 people. When the authors looked at deaths by local area, no association was found with the level of deprivation. If health and social care expenditure are combined in a single model, we see that it’s social care spending that is driving the number of excess deaths. The impact of health spending on hospital deaths was less robust. The number of nurses acted as a mediator for the relationship between spending and mortality. The authors estimate that current spending projections will result in 150,000 additional deaths compared with pre-2010 trends. There are plenty of limitations to this study. It’s pretty much impossible (though the authors do try) to separate the effects of austerity from the effect of a weak economy. Still, I’m satisfied with the conclusion that austerity kills older people (no jokes about turkeys and Christmas, please). For me, the findings also highlight the need for more research in the context of social care, and how we (as researchers) might effectively direct policy to prevent ‘excess’ deaths.

Should cost effectiveness analyses for NICE always consider future unrelated medical costs? BMJ [PubMed] Published 10th November 2017

The question of whether or not ‘unrelated’ future medical costs should be included in economic evaluation is becoming a hot topic. So much so that the BMJ has published this Head To Head, which introduces some of the arguments for and against. NICE currently recommends excluding unrelated future medical costs. An example given in this article is the case of the expected costs of dementia care having saved someone’s life by heart transplantation. The argument in favour of including unrelated costs is quite obvious – these costs can’t be ignored if we seek to maximise social welfare. Their inclusion is described as “not difficult” by the authors defending this move. By ignoring unrelated future costs (but accounting for the benefit of longer life), the relative cost-effectiveness of life-extending treatments, compared with life-improving treatments, is artificially inflated. The argument against including unrelated medical costs is presented as one of fairness. The author suggests that their inclusion could preclude access to health care for certain groups of people that are likely to have high needs in the future. So perhaps NICE should ignore unrelated medical costs in certain circumstances. I sympathise with this view, but I feel it is less a fairness issue and more a demonstration of the current limits of health-related quality of life measurement, which don’t reflect adaptation and coping. However, I tend to disagree with both of the arguments presented here. I really don’t think NICE should include or exclude unrelated future medical costs according to the context because that could create some very perverse incentives for certain stakeholders. But then, I do not agree that it is “not difficult” to include all unrelated future costs. ‘All’ is an important qualifier here because the capacity for analysts to pick and choose unrelated future costs creates the potential to pick and choose results. When it comes to unrelated future medical costs, NICE’s position needs to be all-or-nothing, and right now the ‘all’ bit is a high bar to clear. NICE should include unrelated future medical costs – it’s difficult to formulate a sound argument against that – but they should only do so once more groundwork has been done. In particular, we need to develop more valid methods for valuing quality of life against life-years in health technology assessment across different patient groups. And we need more reliable methods for estimating future medical costs in all settings.

Oncology modeling for fun and profit! Key steps for busy analysts in health technology assessment. PharmacoEconomics [PubMed] Published 6th November 2017

Quite a title(!). The subject of this essay is ‘partitioned survival modelling’. Honestly,  I never really knew what that was until I read this article. It seems the reason for my ignorance could be that I haven’t worked on the evaluation of cancer treatments, for which it’s a popular methodology. Apparently, a recent study found that almost 75% of NICE cancer drug appraisals were informed by this sort of analysis. Partitioned survival modelling is a simple means by which to extrapolate outcomes in a context where people can survive (or not) with or without progression. Often this can be on the basis of survival analyses and standard trial endpoints. This article seeks to provide some guidance on the development and use of partitioned survival models. Or, rather, it provides a toolkit for calling out those who might seek to use the method as a means of providing favourable results for a new therapy when data and analytical resources are lacking. The ‘key steps’ can be summarised as 1) avoiding/ignoring/misrepresenting current standards of economic evaluation, 2) using handpicked parametric approaches for extrapolation in order to maximise survival benefits, 3) creatively estimating relative treatment effects using indirect comparisons without adjustment, 4) make optimistic assumptions about post-progression outcomes, and 5) deny the possibility of any structural uncertainty. The authors illustrate just how much an analyst can influence the results of an evaluation (if they want to “keep ICERs in the sweet spot!”). Generally, these tactics move the model far from being representative of reality. However, the prevailing secrecy around most models means that it isn’t always easy to detect these shortcomings. Sometimes it is though, and the authors make explicit reference to technology appraisals that they suggest demonstrate these crimes. Brilliant!

Credits