Chris Sampson’s journal round-up for 18th December 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Individualized glycemic control for U.S. adults with type 2 diabetes: a cost-effectiveness analysis. Annals of Internal Medicine [PubMed] Published 12th December 2017

The nature of diabetes – that it affects a lot of people and is associated with a wide array of physiological characteristics and health impacts – has given rise to recommendations for individualisation of care. This paper evaluates individualisation of glycemic control targets. Specifically, the individualised programme allocated people to one of 3 HbA1c targets (<6.5%, <7%, <8%) according to their characteristics, while the comparator was based on a single fixed target (<7%). The researchers used a patient-level simulation model. Risk equations developed by the UKPDS study were used to predict diabetes complications and mortality. The baseline population was derived from the NHANES study for 2011-12 and constitutes people who self-reported as having diabetes and who were at least 30 years old at diagnosis (to try and isolate type 2 diabetes). It’s not much of a surprise that the individualised approach dominated uniform intensive control, saving $13,547 on average per patient with a slight improvement in QALY outcomes. But the findings are not all in favour of individualisation. Quality of life improvements due to the benefits of medication were partially counteracted by a slight decrease in life years gained due to a higher rate of (mortality-increasing) complications. The absolute lifetime risk of myocardial infarction was 1.39% higher with individualisation. A key outstanding question is how much the individualisation process would actually cost to get right. Granted, it probably wouldn’t cost as much as the savings estimated in this study, but the difficulty of ensuring adequate data quality to consistently inform individualisation should not be underestimated.

Microlevel prioritizations and incommensurability. Cambridge Quarterly of Healthcare Ethics [PubMed] Published 7th December 2017

This article concerns the ethical challenges of decision-making at the microlevel. For example, decisions may need to be made about allocating resources between 2 or more identifiable patients, perhaps within a particular clinic or amongst an individual clinician’s patients. The author asserts two relevant values: health need satisfaction and efficiency. Health need satisfaction is defined in terms of severity (regardless of capacity to benefit from available treatments), while efficiency is defined in terms of the maximisation of health benefit (subject to the effectiveness of treatment). The author then argues that these two values are incommensurable in the sense that we can have situations in which health need satisfaction is greater (or less) for a given choice over another, while efficiency could be lower (or higher). Thus, it is not always possible to rank choices given two non-cardinally-comparable values. It might not be clear whether it is better to treat patient A or patient B if the implications of doing so are different in terms of need and efficiency. The author then goes on to suggest some solutions to this apparent problem, starting by highlighting the need for decision makers (in this case clinicians) to recognise different decision paths. The first solution is to generate some guidelines that offer complete ordering of possible choices. These might be based on a process of weighting the different values (e.g. health need satisfaction and efficiency). The other ‘solution’ is to leave the decision to medical practitioners, who can create reasons for choices that may be unique to the case at hand. In this case, certain decision paths should be avoided, such as those that would entail discrimination. I have a lot of problems with this assessment of decision-making at the individual level. Mainly, the discussion is undermined by the fact that efficiency and health need satisfaction are entirely commensurable insofar as we care about either of them in relation to prioritisation in health care. We tend to understand both health need satisfaction and opportunity cost (the basis for estimating efficiency) in terms of health outcomes. The essay also fails to clearly identify the uniqueness of the challenge of microlevel decision-making as distinct from the process of creating clinical guidelines. This may call for a follow-up blog post…

EQ-5D: moving from three levels to five. Value in Health Published 6th December 2017

If you work on economic evaluation, the move from using the EQ-5D-3L to the EQ-5D-5L – in terms of the impact on our results – is one of the biggest methodological step changes in recent memory. We all know that the 5L (and associated value set for England) is better than the 3L. Don’t we? So it is perhaps a bit disappointing that the step to the 5L has been so tentative. This editorial articulates the challenge. NICE makes standards. EuroQoL does research. NICE was (relatively) satisfied with the 3L. EuroQoL wasn’t. We have a clash between an inherently (perhaps necessarily) conservative institution and an inherently progressive institution. Hopefully, their interaction will put us on a sustainable path that achieves both methodological consistency and scientific rigour. This editorial also provides us with a DOI-citable account of the saga that includes the development of the 5L value set for England and NICE’s subsequent memorandum.

Current UK practices on health economics analysis plans (HEAPs): are we using heaps of them? PharmacoEconomics [PubMed] Published 6th December 2017

You could get by for years in economic evaluation without even hearing about ‘health economics analysis plans’ (HEAPs). It probably depends on the policies set by the clinical trials unit (CTU) that you’re working with. The idea is that HEAPs are an equivalent standard operating procedure (SOP) to a statistical analysis plan – setting out how the trial data will be analysed before the analysis begins. This could aid transparency and consistency, and prevent dodgy practices. In this study, the researchers sought to find out whether HEAPs are actually being used, and their perceived role in clinical trials research. A survey targeted 46 UK CTUs, asking about the role of health economists in the unit and whether they used HEAP SOPs. Of 28 respondents, 11 reported having an embedded health economics team. A third of CTUs reported always having a HEAP in place. Most said they only used HEAPs ‘sometimes’, and publicly funded trials were said to be more likely to use a HEAP. The majority of respondents agreed it was acceptable to produce the HEAP at any point prior to a lockdown of the data. The findings demonstrate inconsistency in who writes HEAPs and who is perceived to be the audience. I agree with the premise that we need HEAPs. Though I’m not sure what they should look like, except that statistical analysis plans probably should not be used as a template. It would be good if some of these researchers took things a step further and figured out what ought to go into a HEAP, so that we can consistently employ their recommendations. If you’re on the HEALTHECON-ALL mailing list, you’ll know that they’re already on the case.

Credits

 

Chris Sampson’s journal round-up for 29th May 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

“Naming and framing”: The impact of labeling on health state values for multiple sclerosis. Medical Decision Making [PubMedPublished 21st May 2017

Tell someone that the health state that they’re valuing is actually related to cancer, and they’ll give you a different value than if you hadn’t mentioned cancer. A lower value, probably. There’s a growing amount of evidence that ‘labelling’ health state descriptions with the name of a particular disease can influence the resulting values. Generally, the evidence is that mentioning the disease will lower values, though that’s probably because researchers have been selecting diseases that they think will show this. (Has anyone tried it for hayfever?) The jury is out on whether labelling is a good thing or a bad thing, so in the meantime, we need evidence for particular diseases to help us understand what’s going on. This study looks at MS. Two UK-representative samples (n = 1576; n = 1641) completed an online TTO valuation task for states defined using the condition-specific preference-based MSIS-8D. Participants were first asked to complete the MSIS-8D to provide their own health state, and then to rank three MSIS-8D states and also complete a practice TTO task. For the preference elicitation proper, individuals were presented with a set of 5 MSIS-8D health states. One group were asked to imagine that they had MS and were provided with some information and a link to the NHS Choices website. The authors’ first analysis tests for a difference due to labelling. Their second analysis creates two alternative tariffs for the MSIS-8D based on the two surveys. People in the label group reported lower health state values on average. The size of this labelling-related decrement was greater for less severe health states. The creation of the tariffs seemed to show that labelling does not have a consistent impact across dimensions. This means that, in practice, the two tariffs could favour different types of interventions, depending on for which dimensions benefits might be observed. The tariff derived from the label group demonstrated slightly poorer predictive performance. This study tells us that label-or-not is a decision that will influence the relative cost-effectiveness of interventions for MS. But we still need a sound basis for making that choice.

Nudges in a post-truth world. Journal of Medical Ethics [PubMed] Published 19th May 2017

Not everyone likes the idea of nudges. They can be used to get people to behave in ways that are ‘better’… but who decides what is better? Truth, surely, we can all agree, is better. There are strong forces against the truth, whether they be our own cognitive biases, the mainstream media (FAKE NEWS!!!), or Nutella trying to tell us they offer a healthy breakfast option thanks to all that calcium. In this essay, the author outlines a special kind of nudge, which he refers to as a ‘nudge to reason’. The paper starts with a summary of the evidence regarding the failure of people to change their minds in response to evidence, and the backfire effect, whereby false beliefs become even more entrenched in light of conflicting evidence. Memory failures, and the ease with which people can handle the information, are identified as key reasons for perverse responses to evidence. The author then goes on to look at the evidence in relation to the conditions in which people do respond to evidence. In particular, where people get their evidence matters (we still trust academics, right?). The persuasiveness of evidence can be influenced by the way it is delivered. So why not nudge towards the truth? The author focuses on a key objection to nudges; that they do not protect freedom in a substantive sense because they bypass people’s capacities for deliberation. Nudges take advantage of non-rational features of human nature and fail to treat people as autonomous agents deserving of respect. One of the reasons I’ve never much like nudges is that they could promote ignorance and reinforce biases. Nudges to reason, on the other hand, influence behaviour indirectly via beliefs: changing behaviour by changing minds by improving responses to genuine evidence. The author argues that nudges to reason do not bypass the deliberative capacities of agents at all, but rather appeal to them, and are thus permissible. They operate by appealing to mechanisms that are partially constitutive of rationality and this is itself part of what defines our substantive freedom. We could also extend this to argue that we have a moral responsibility to frame arguments in a way that is truth-conducive, in order to show respect to individuals. I think health economists are in a great position to contribute to these debates. Our subfield exists principally because of uncertainty and asymmetry of information in health care. We’ve been studying these things for years. I’m convinced by the author’s arguments about the permissibility of nudges to reason. But they’d probably make for flaccid public policy. Nudges to reason would surely be dominated by nudges to ignorance. Either people need coercing towards the truth or those nudges to ignorance need to be shut down.

How should hospital reimbursement be refined to support concentration of complex care services? Health Economics [PubMed] Published 19th May 2017

Treating rare and complex conditions in specialist centres may be good for patients. We might expect these patients to be especially expensive to treat compared with people treated in general hospitals. Therefore, unless reimbursement mechanisms are able to account for this, specialist hospitals will be financially disadvantaged and concentration might not be sustainable. Healthcare Resource Groups (HRGs) – the basis for current payments – only work if variation in cost is not related to any differences in the types of patients treated at particular hospitals. This study looks at hospitals that might be at risk of financial disadvantage due to differences in casemix complexity. Individual-level Hospital Episode Statistics for 2013-14 were matched to hospital-level Reference Costs and a set of indicators for the use of specialist services were applied. The data included 12.4 million patients of whom 766,204 received complex care. The authors construct a random effects model estimating the cost difference associated with complex care, by modelling the impact of a set of complex care markers on individual-level cost estimates. The Gini coefficient is estimated to look at the concentration of complex care across hospitals. Most of the complex care markers were associated with significantly higher costs. 26 of 69 types of complex care were associated with costs more than 10% higher. What’s more, complex care was concentrated among relatively few hospitals with a mean Gini coefficient of 0.88. Two possible approaches to fixing the payment system are considered: i) recalculation of the HRG price to include a top-up or ii) a more complex refinement of the allocation of patients to different HRGs. The second option becomes less attractive as more HRGs are subject to this refinement as we could end up with just one hospital reporting all of the activity for a particular HRG. Based on the expected impact of these differences – in view of the size of the cost difference and the extent of distribution across different HRGs and hospitals – the authors are able to make recommendations about which HRGs might require refinement. The study also hints at an interesting challenge. Some of the complex care services were associated with lower costs where care was concentrated in very few centres, suggesting that concentration could give rise to cost savings. This could imply that some HRGs may need refining downwards with complexity, which feels a bit counterintuitive. My only criticism of the paper? The references include at least 3 web pages that are no longer there. Please use WebCite, people!

Credits

Paul Mitchell’s journal round-up for 15th May 2017

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Informal care: choice or constraint. Scandinavian Journal of Caring Sciences [PubMed] Published 12th April 2017

The provision of social care in the UK has become a major economic issue, with recent increases in government spending and local authority taxation to help ease the burden on both the health and social care system in the short term. This study examines some of the issues surrounding informal carers (i.e. care of a family member), estimated to be approximately 10% of the UK population. In particular, it focuses on the role of choice and constraints involved with the decision to become a carer. Using a cross-sectional survey for a UK city, choice of caring was explored in terms of responses to care provision provided, asking if it was a free choice initially to provide care, and if there were constraints in terms of duty, lack of others or financial resources for paid care. The analysis focused on how perceived choice in the caring role was associated with socio-demographics and the type of caring role performed, as well as the role of perceived choice in caring and their wellbeing. Out of the 798 respondents to all four questions on caring choice, about 1 in 3 reported an entirely free choice in the decision, with half reporting having a free choice but also a constraint in terms of duty, other available carers or financial resources. Less than 1 in 5 reported not having a free choice. Only carers with bad health or receiving state benefits had an association with a constrained caring role. The more intense the care role was also associated with a more constrained choice. Higher levels of choice were associated with higher levels of wellbeing across measures of happiness, life satisfaction and capability. In multivariable regression analysis, it was found that having a free choice in the initial caring decision resulted in a higher impact on life satisfaction than educational qualifications and home ownership, whilst improved capability of comparable levels to that of home ownership, all else being equal. The authors thus recommend enhanced choice as a way for policy to improve carers wellbeing. Although the authors acknowledge limitations with the study design being cross-sectional and geographically limited to one city, the study shows there is plenty of scope for understanding the determinants of informal caring and consequences for those carers in much greater detail in future national surveys to help address policy in this area in the medium to longer term.

Experienced utility or decision utility for QALY calculation? Both. Public Health Ethics [PhilPapersPublished 6th May 2017

How health states should be valued in population health metrics, like QALYs and DALYs, will not be an unfamiliar topic of discussion for regular readers of this blog. Instead of arguing for decision utility (i.e. accounting for general population preferences for avoiding health states) or experienced utility (i.e. accounting for patient experiences of health states), the authors in this paper argue for a combined approach, reviving a suggestion previously put forward by Lowenstein & Ubel. The authors neatly summarise some of the issues of relying on either decision utility or experienced utility approaches alone and instead argue for better informed decision utility exercises by using deliberative democracy methods where experienced utility in health states are also presented. Unfortunately, there is little detail of how this process might actually work in practice. There are likely to be issues of what patient experiences are presented in such an exercise and how other biases that may influence decision utility responses are controlled for in such an approach. Although I am generally in favour of more deliberative approaches to elicit informed values for resource allocation, I find that this paper makes a convincing case for neither of the utility approaches to valuation, rather than both.

The value of different aspects of person-centred care: a series of discrete choice experiments in people with long-term conditions. BMJ Open [PubMed] Published 26th April 2017

The term “person-centred care” is one which is gaining some prominence in how healthcare is provided. What it means, and how important different aspects of person-centred care are, is explored in this study using discrete choice experiments (DCEs). Through focus groups and drawing from the authors’ own experience in this area, four aspects of person-centred care for self-management of chronic conditions make up the attributes in the DCE across two levels: (i) information (same information for all/personalised information); (ii) situation (little account of current situation/suggestions that fit current situation); (iii) living well (everyone wants the same from life/works with patient for what they want from life); (iv) communication (neutral professional way/friendly professional way). A cost attribute was also attached to the DCE that was given to patient groups with chronic pain and chronic lung disease. The overall findings suggest that person-centred care focused on situation and living well were valued most with personal communication style valued the least. Latent class analysis also suggested that 1 in 5 of those sampled valued personalised information the most. Those with lower earnings were likely to look to reduce the cost attribute the most. The authors conclude that the focus on communication in current clinician training on person-centred care may not be what is of most value to patients. However, I am not entirely convinced by this argument, as it could be that communication was not seen as an issue by the respondents, perhaps somewhat influenced due to the skills clinicians already have obtained in this area. Clearly, these process aspects of care are difficult to develop attributes for in DCEs, and the authors acknowledge that the wording of the “neutral” and “high” levels may have biased responses. I also found that dropping the “negative” third level for each of the attributes unconvincing. It may have proved more difficult to complete than two levels, but it would have shown in much greater depth how much value is attached to the four attributes relative to one another.

Credits