Chris Sampson’s journal round-up for 7th May 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Building an international health economics teaching network. Health Economics [PubMedPublished 2nd May 2018

The teaching on my health economics MSc (at Sheffield) was very effective. Experts from our subdiscipline equipped me with the skills that I went on to use on a daily basis in my first job, and to this day. But not everyone gets the same opportunity. And there were only 8 people on my course. Part of the background to the new movement described in this editorial is the observation that demand for health economists outstrips supply. Great for us jobbing health economists, but suboptimal for society. The shortfall has given rise to people teaching health economics (or rather, economic evaluation methods) without any real training in economics. The main purpose of this editorial is to call on health economists (that’s me and you) to pull our weight and contribute to a collective effort to share, improve, and ultimately deliver high-quality teaching resources. The Health Economics education website, which is now being adopted by iHEA, should be the starting point. And there’s now a Teaching Health Economics Special Interest Group. So chip in! This paper got me thinking about how the blog could play its part in contributing to the infrastructure of health economics teaching, so expect to see some developments on that front.

Including future consumption and production in economic evaluation of interventions that save life-years: commentary. PharmacoEconomics – Open [PubMed] Published 30th April 2018

When people live longer, they spend their extra life-years consuming and producing. How much consuming and producing they do affects social welfare. The authors of this commentary are very clear about the point they wish to make, so I’ll just quote them: “All else equal, a given number of quality-adjusted life-years (QALYs) from life prolongation will normally be more costly from a societal perspective than the same number of QALYs from programmes that improve quality of life”. This is because (in high-income countries) most people whose life can be extended are elderly, so they’re not very productive. They’re likely to create a net cost for society (given how we measure value). Asserting that the cost is ‘worth it’ at any level, or simply ignoring the matter, isn’t really good enough because providing life extension will be at the expense of some life-improving treatments which may – were these costs taken into account – improve social welfare. The authors’ estimates suggest that the societal cost of life-extension is far greater than current methods admit. Consumption costs and production gains should be estimated and should be given some weight in decision-making. The question is not whether we should measure consumption costs and production gains – clearly, we should. The question is what weight they ought to be given in decision-making.

Methods for the economic evaluation of changes to the organisation and delivery of health services: principal challenges and recommendations. Health Economics, Policy and Law [PubMedPublished 20th April 2018

The late, great, Alan Maynard liked to speak about redisorganisations in the NHS: large-scale changes to the way services are organised and delivered, usually without a supporting evidence base. This problem extends to smaller-scale service delivery interventions. There’s no requirement for policy-makers to demonstrate that changes will be cost-effective. This paper explains why applying methods of health technology assessment to service interventions can be tricky. The causal chain of effects may be less clear when interventions are applied at the organisational level rather than individual level, and the results will be heavily dependent on the present context. The author outlines five challenges in conducting economic evaluations for service interventions: i) conducting ex-ante evaluations, ii) evaluating impact in terms of QALYs, iii) assessing costs and opportunity costs, iv) accounting for spillover effects, and v) generalisability. Those identified as most limiting right now are the challenges associated with estimating costs and QALYs. Cost data aren’t likely to be readily available at the individual level and may not be easily identifiable and divisible. So top-down programme-level costs may be all we have to work with, and they may lack precision. QALYs may be ‘attached’ to service interventions by applying a tariff to individual patients or by supplementing the analysis with simulation modelling. But more methodological development is still needed. And until we figure it out, health spending is likely to suffer from allocative inefficiencies.

Vog: using volcanic eruptions to estimate the health costs of particulates. The Economic Journal [RePEc] Published 12th April 2018

As sources of random shocks to a system go, a volcanic eruption is pretty good. A major policy concern around the world – particularly in big cities – is the impact of pollution. But the short-term impact of particulate pollution is difficult to identify because there is high correlation amongst pollutants. In this study, the authors use the eruption activity of Kīlauea on the island of Hawaiʻi as a source of variation in particulate pollution. Vog – volcanic smog – includes sulphur dioxide and is similar to particulate pollution in cities, but the fact that Hawaiʻi does not have the same levels of industrial pollutants means that the authors can more cleanly identify the impact on health outcomes. In 2008 there was a big increase in Kīlauea’s emissions when a new vent opened, and the level of emissions fluctuates daily, so there’s plenty of variation to play with. The authors have two main sources of data: emergency admissions (and their associated charges) and air quality data. A parsimonious OLS model is used to estimate the impact of air quality on the total number of admissions for a given day in a given region, with fixed effects for region and date. An instrumental variable approach is also used, which looks at air quality on a neighbouring island and uses wind direction to specify the instrumental variable. The authors find that pulmonary-related emergency admissions increased with pollution levels. Looking at the instrumental variable analysis, a one standard deviation increase in particulate pollution results in 23-36% more pulmonary-related emergency visits (depending on which measure of particulate pollution is being used). Importantly, there’s no impact on fractures, which we wouldn’t expect to be influenced by the particulate pollution. The impact is greatest for babies and young children. And it’s worth bearing in mind that avoidance behaviours – e.g. people staying indoors on ‘voggy’ days – are likely to reduce the impact of the pollution. Despite the apparent lack of similarity between Hawaiʻi and – for example – London, this study provides strong evidence that policy-makers should consider the potential savings to the health service when tackling particulate pollution.

Credits

Sam Watson’s journal round-up for 12th February 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

Tuskegee and the health of black men. The Quarterly Journal of Economics [RePEc] Published February 2018

In 1932, a study often considered the most infamous and potentially most unethical in U.S. medical history began. Researchers in Alabama enrolled impoverished black men in a research program designed to examine the effects of syphilis under the guise of receiving government-funded health care. The study was known as the Tuskegee syphilis experiment. For 40 years the research subjects were not informed they had syphilis nor were they treated, even after penicillin was shown to be effective. The study was terminated in 1972 after its details were leaked to the press; numerous men died, 40 wives contracted syphilis, and a number of children were born with congenital syphilis. It is no surprise then that there is distrust among African Americans in the medical system. The aim of this article is to examine whether the distrust engendered by the Tuskegee study could have contributed to the significant differences in health outcomes between black males and other groups. To derive a causal estimate the study makes use of a number of differences: black vs non-black, for obvious reasons; male vs female, since the study targeted males, and also since women were more likely to have had contact with and hence higher trust in the medical system; before vs after; and geographic differences, since proximity to the location of the study may be informative about trust in the local health care facilities. A wide variety of further checks reinforce the conclusions that the study led to a reduction in health care utilisation among black men of around 20%. The effect is particularly pronounced in those with low education and income. Beyond elucidating the indirect harms caused by this most heinous of studies, it illustrates the importance of trust in mediating the effectiveness of public institutions. Poor reputations caused by negligence and malpractice can spread far and wide – the mid-Staffordshire hospital scandal may be just such an example.

The economic consequences of hospital admissions. American Economic Review [RePEcPublished February 2018

That this paper’s title recalls that of Keynes’s book The Economic Consequences of the Peace is to my mind no mistake. Keynes argued that a generous and equitable post-war settlement was required to ensure peace and economic well-being in Europe. The slow ‘economic privation’ driven by the punitive measures and imposed austerity of the Treaty of Versailles would lead to crisis. Keynes was evidently highly critical of the conference that led to the Treaty and resigned in protest before its end. But what does this have to do with hospital admissions? Using an ‘event study’ approach – in essence regressing the outcome of interest on covariates including indicators of time relative to an event – the paper examines the impact hospital admissions have on a range of economic outcomes. The authors find that for insured non-elderly adults “hospital admissions increase out-of-pocket medical spending, unpaid medical bills, and bankruptcy, and reduce earnings, income, access to credit, and consumer borrowing.” Similarly, they estimate that hospital admissions among this same group are responsible for around 4% of bankruptcies annually. These losses are often not insured, but they note that in a number of European countries the social welfare system does provide assistance for lost wages in the event of hospital admission. Certainly, this could be construed as economic privation brought about by a lack of generosity of the state. Nevertheless, it also reinforces the fact that negative health shocks can have adverse consequences through a person’s life beyond those directly caused by the need for medical care.

Is health care infected by Baumol’s cost disease? Test of a new model. Health Economics [PubMed] [RePEcPublished 9th February 2018

A few years ago we discussed Baumol’s theory of the ‘cost disease’ and an empirical study trying to identify it. In brief, the theory supposes that spending on health care (and other labour-intensive or creative industries) as a proportion of GDP increases, at least in part, because these sectors experience the least productivity growth. Productivity increases the fastest in sectors like manufacturing and remuneration increases as a result. However, this would lead to wages in the most productive sectors outstripping those in the ‘stagnant’ sectors. For example, salaries for doctors would end up being less than those for low-skilled factory work. Wages, therefore, increase in the stagnant sectors despite a lack of productivity growth. The consequence of all this is that as GDP grows, the proportion spent on stagnant sectors increases, but importantly the absolute amount spent on the productive sectors does not decrease. The share of the pie gets bigger but the pie is growing at least as fast, as it were. To test this, this article starts with a theoretic two-sector model to develop some testable predictions. In particular, the authors posit that the cost disease implies: (i) productivity is related to the share of labour in the health sector, and (ii) productivity is related to the ratio of prices in the health and non-health sectors. Using data from 28 OECD countries between 1995 and 2016 as well as further data on US industry group, they find no evidence to support these predictions, nor others generated by their model. One reason for this could be that wages in the last ten years or more have not risen in line with productivity in manufacturing or other ‘productive’ sectors, or that productivity has indeed increased as fast as the rest of the economy in the health care sector. Indeed, we have discussed productivity growth in the health sector in England and Wales previously. The cost disease may well then not be a cause of rising health care costs – nevertheless, health care need is rising and we should still expect costs to rise concordantly.

Credits

Chris Sampson’s journal round-up for 8th January 2018

Every Monday our authors provide a round-up of some of the most recently published peer reviewed articles from the field. We don’t cover everything, or even what’s most important – just a few papers that have interested the author. Visit our Resources page for links to more journals or follow the HealthEconBot. If you’d like to write one of our weekly journal round-ups, get in touch.

An empirical comparison of the measurement properties of the EQ-5D-5L, DEMQOL-U and DEMQOL-Proxy-U for older people in residential care. Quality of Life Research [PubMed] Published 5th January 2018

There is now a condition-specific preference-based measure of health-related quality of life that can be used for people with cognitive impairment: the DEMQOL-U. Beyond the challenge of appropriately defining quality of life in this context, cognitive impairment presents the additional difficulty that individuals may not be able to self-complete a questionnaire. There’s some good evidence that proxy responses can be valid and reliable for people with cognitive impairment. The purpose of this study is to try out the new(ish) EQ-5D-5L in the context of cognitive impairment in a residential setting. Data were taken from an observational study in 17 residential care facilities in Australia. A variety of outcome measures were collected including the EQ-5D-5L (proxy where necessary), a cognitive bolt-on item for the EQ-5D, the DEMQOL-U and the DEMQOL-Proxy-U (from a family member or friend), the Modified Barthel Index, the cognitive impairment Psychogeriatric Assessment Scale (PAS-Cog), and the neuropsychiatric inventory questionnaire (NPI-Q). The researchers tested the correlation, convergent validity, and known-group validity for the various measures. 143 participants self-completed the EQ-5D-5L and DEMQOL-U, while 387 responses were available for the proxy versions. People with a diagnosis of dementia reported higher utility values on the EQ-5D-5L and DEMQOL-U than people without a diagnosis. Correlations between the measures were weak to moderate. Some people reported full health on the EQ-5D-5L despite identifying some impairment on the DEMQOL-U, and some vice versa. The EQ-5D-5L was more strongly correlated with clinical outcome measures than were the DEMQOL-U or DEMQOL-Proxy-U, though the associations were generally weak. The relationship between cognitive impairment and self-completed EQ-5D-5L and DEMQOL-U utilities was not in the expected direction; people with greater cognitive impairment reported higher utility values. There was quite a lot of disagreement between utility values derived from the different measures, so the EQ-5D-5L and DEMQOL-U should not be seen as substitutes. An EQ-QALY is not a DEM-QALY. This is all quite perplexing when it comes to measuring health-related quality of life in people with cognitive impairment. What does it mean if a condition-specific measure does not correlate with the condition? It could be that for people with cognitive impairment the key determinant of their quality of life is only indirectly related to their impairment, and more dependent on their living conditions.

Resolving the “cost-effective but unaffordable” paradox: estimating the health opportunity costs of nonmarginal budget impacts. Value in Health Published 4th January 2018

Back in 2015 (as discussed on this blog), NICE started appraising drugs that were cost-effective but implied such high costs for the NHS that they seemed unaffordable. This forced a consideration of how budget impact should be handled in technology appraisal. But the matter is far from settled and different countries have adopted different approaches. The challenge is to accurately estimate the opportunity cost of an investment, which will depend on the budget impact. A fixed cost-effectiveness threshold isn’t much use. This study builds on York’s earlier work that estimated cost-effectiveness thresholds based on health opportunity costs in the NHS. The researchers attempt to identify cost-effectiveness thresholds that are in accordance with different non-marginal (i.e. large) budget impacts. The idea is that a larger budget impact should imply a lower (i.e. more difficult to satisfy) cost-effectiveness threshold. NHS expenditure data were combined with mortality rates for different disease categories by geographical area. When primary care trusts’ (PCTs) budget allocations change, they transition gradually. This means that – for a period of time – some trusts receive a larger budget than they are expected to need while others receive a smaller budget. The researchers identify these as over-target and under-target accordingly. The expenditure and outcome elasticities associated with changes in the budget are estimated for the different disease groups (defined by programme budgeting categories; PBCs). Expenditure elasticity refers to the change in PBC expenditure given a change in overall NHS expenditure. Outcome elasticity refers to the change in PBC mortality given a change in PBC expenditure. Two econometric approaches are used; an interaction term approach, whereby a subgroup interaction term is used with the expenditure and outcome variables, and a subsample estimation approach, whereby subgroups are analysed separately. Despite the limitations associated with a reduced sample size, the subsample estimation approach is preferred on theoretical grounds. Using this method, under-target PCTs face a cost-per-QALY of £12,047 and over-target PCTs face a cost-per-QALY of £13,464, reflecting diminishing marginal returns. The estimates are used as the basis for identifying a health production function that can approximate the association between budget changes and health opportunity costs. Going back to the motivating example of hepatitis C drugs, a £772 million budget impact would ‘cost’ 61,997 QALYs, rather than the 59,667 that we would expect without accounting for the budget impact. This means that the threshold should be lower (at £12,452 instead of £12,936) for a budget impact of this size. The authors discuss a variety of approaches for ‘smoothing’ the budget impact of such investments. Whether or not you believe the absolute size of the quoted numbers depends on whether you believe the stack of (necessary) assumptions used to reach them. But regardless of that, the authors present an interesting and novel approach to establishing an empirical basis for estimating health opportunity costs when budget impacts are large.

First do no harm – the impact of financial incentives on dental x-rays. Journal of Health Economics [RePEc] Published 30th December 2017

If dentists move from fee-for-service to a salary, or if patients move from co-payment to full exemption, does it influence the frequency of x-rays? That’s the question that the researchers are trying to answer in this study. It’s important because x-rays always present some level of (carcinogenic) risk to patients and should therefore only be used when the benefits are expected to exceed the harms. Financial incentives shouldn’t come into it. If they do, then some dentists aren’t playing by the rules. And that seems to be the case. The authors start out by establishing a theoretical framework for the interaction between patient and dentist, which incorporates the harmful nature of x-rays, dentist remuneration, the patient’s payment arrangements, and the characteristics of each party. This model is used in conjunction with data from NHS Scotland, with 1.3 million treatment claims from 200,000 patients and 3,000 dentists. In 19% of treatments, an x-ray occurs. Some dentists are salaried and some are not, while some people pay charges for treatment and some are exempt. A series of fixed effects models are used to take advantage of these differences in arrangements by modelling the extent to which switches (between arrangements, for patients or dentists) influence the probability of receiving an x-ray. The authors’ preferred model shows that both the dentist’s remuneration arrangement and the patient’s financial status influences the number of x-rays in the direction predicted by the model. That is, fee-for-service and charge exemption results in more x-rays. The combination of these two factors results in a 9.4 percentage point increase in the probability of an x-ray during treatment, relative to salaried dentists with non-exempt patients. While the results do show that financial incentives influence this treatment decision (when they shouldn’t), the authors aren’t able to link the behaviour to patient harm. So we don’t know what percentage of treatments involving x-rays would correspond to the decision rule of benefits exceeding harms. Nevertheless, this is an important piece of work for informing the definition of dentist reimbursement and patient payment mechanisms.

Credits